Proceedings of the DETC’99

1999 ASME Design Engineering Technical Conferences

September 12-15, 1999, Las Vegas, Nevada

DETC99/VIB-8213

DYNAMICS OF WASHING MACHINES:
MECHANICAL MODEL AND SIMULATION

Falk Wagner
Lehrstuhl B fiir Mechanik

Technische Universitat Miinchen
85747 Garching, Germany
Email: wagner@lbm.mw.tu-muenchen.de

ABSTRACT

This paper deals with the dynamical behavior of wash-
ing machines. Due to large unbalance forces of the laundry
during the spinning process a mechanical model has been es-
tablished from d’ ALAMBERT’s principle that considers both
the rigid body motion and the elastic vibrations. Accord-
ing to the complexity of the machine parts the results of
a finite element mode shape analysis are used to describe
the elastic behavior. The distinct bodies of the system are
linked together through linear and nonlinear force elements
resulting in the excitation of several machine orders. In
order to verify the model, simulation results are compared
with measurements.

INTRODUCTION

In recent years the requirements on washing machines
with respect to maximum spinning speed and comfort have
been continuously increased and, concurrently, the devel-
opment expenses decreased. In order to maintain competi-
tiveness, nowadays computer simulations become more and
more popular to support this task. The aim of the research
project, which is partially presented in this paper, is to
develop a simulation tool, that is specifically designed for
washing machines. Due to the low eigenfrequencies of some
of the bodies in addition with large oscillating unbalance
forces the program has to be able to consider these bodies
as elastic structures.

The problem with elastic bodies compared to systems
consisting of rigid bodies only is that the dynamical behav-
ior is not represented by ordinary but partial differential
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equations. A detailed presentation on elastic multibody
systems can be found in Bremer (1992). Johanni (1984)
describes an algorithm to automatically generate the equa-
tions of motion for tree like structures with elastic beams
based on d’ALAMBERT’s principle using splines as shape
functions for a RITZ separation. Ouatouati, Fisette, and
Johnson (1997) present a program for elastic multibody
systems with plates using similar approaches. However, for
more complex bodies it is not possible to specify valid shape
functions in such a way. Franz (1993) discusses the dynam-
ical behavior of an electronic scale employing the eigen-
frequencies and mode shapes of a finite element analysis.
Sorge (1993) describes a procedure to incorporate the dy-
namical stiffening effects that are neglected when directly
utilising finite element results. Instead of using such re-
sults he directly incorporates the mathematical description
of the finite elements into its equations of motion. Wallrapp
and Schwertassek (1991) propose a method which uses addi-
tional results from static finite element analyses to consider
the geometrical stiffening effects.

MECHANICAL MODEL

The washing machine used to validate the mechanical
model consists of a rotating drum for the laundry which is
embedded in a surrounding tub. It is driven by a motor
which is also mounted onto the tub. The motion of the
motor is transmitted through a belt with a gear ratio of
11.25. The tub itself is suspended in the cabinet through
three linear springs, a large door gasket, and two friction
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dampers with additional rubber bearings. The cabinet is
placed on the floor with four feet.

Since many parts of the machine are rigidly connected
through screws or welding points, the whole system can be
modeled using four different bodies. On the one hand, this
leads to shorter computing times in the multibody simu-
lation but on the other hand requires very complex finite
element models of the elastic bodies for representing the
modal parameters correctly. Figure 1 illustrates the dis-
tinct bodies of the washing machine and their attached co-
ordinate systems. Additionally, the machine is separated
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Figure 1. Mechanical model

into two subsystems which are not kinematically connected.
This model has the advantage, that each subsystem is repre-
sented through an own block in the mass matrix and can be
treated independently. The first subsystem consists of the
tub, the drum and the rotor, the second one of the cabinet
only.

The equations of motion are linearised with respect to
the large rotations Q of the drum and the rotor (see Figure
1), which leads to a non-constant mass matrix for subsystem
1 and a constant one for subsystem 2. Due to the block
structure of the mass matrix only the corresponding non-
constant part has to be inverted during the time integration
which reduces the computational efforts.

The tub system allows all six rigid body degrees of free-
dom (dof), whereas the drum and the rotor have no extra
dof with respect to the tub. Deviations from the given
large angular velocity €2 can be considered through mea-
sured speed profiles which also include the influences from
the motor controller. The cabinet is modeled without any

rigid body dof. Additionally the tub, the drum, and the
cabinet can be modeled elastically.

MATHEMATICAL MODEL

Equations of motion

As mentioned, the equations of motion are derived with
respect to a large overall rotation of the drum and all re-
sulting vibrations of the machine are assumed to be small.
Figure 2 illustrates an arbitrary elastic body in its initial
and its deformed state. In order to describe its motion sev-

configuration

Figure 2. Coordinate systems

eral coordinate systems are associated with the body, the
reference system R, a body fixed system B, and a system
P to describe the behavior of arbitrary points of the body.
These are for example attachment points of force elements
or connections to additional bodies. Since results of a finite
element analysis are used for the elastic vibrations, which
are only known in a body fixed coordinate system, the equa-
tions of motion are written with respect to system B. The
motion of an arbitrary point is then given by the vector
chain ;g + rrp + ¢ representing the rigid body move-
ments, superimposed by elastic vibrations ¥,;. Taking the
time derivatives yields the kinematical equations below

T"=Tir+TRB + To +Te
V=10, + T + @(zo + Ter)
@ = @, + Te + &(To + Fer) + 2F et + 0@ (To + Fet),

with w being the angular velocity of system B with re-
spect to system R and w being the corresponding angular
acceleration. These equations are necessary to derive the
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equations of motion of the elastic multibody system using
d’ALAMBERT’s principle according to LANGRANGE’s formu-
lation

Z/ orT(a — f)dm = 0.

a is the absolute acceleration as stated above, dr7 is a small
virtual displacement of a mass element dm consistent with
the kinematics of the corresponding body and f are applied
forces acting on the mass element. Expanding the different
terms of this equation yields the well known formulation for
linearised discrete systems

(Mo + M)(do +q) — (ho + ) = 0.

M is the mass matrix of the system, ¢ the vector of gen-
eralised coordinates and h includes all active forces. The
index 0 indicates zeroth order, the overline first order com-
ponents. Of particular interest for the derivation is the
treatment of the partial differential equations describing
the elastic motion of a body represented by the vector ¥.;.
Therefore, the time and space dependencies are separated
using a RITZ approximation

Fa=Wgqa, WeR, g.eR", neN,

where W are given shape functions (here nodal components
of eigenvectors) satisfying the geometrical boundary con-
ditions and g.; are time dependent weighting coefficients.
Using finite element models which contain elements with
linear dof only the equation above leads to a correct rep-
resentation of the elastic vibrations, whereas elements with
angular dof or attached masses with inertia effects are not
fully considered. This results from the fact that only the
linear components of the eigenvector are utilised in this ex-
pression. Due to the complexity of the washing machine
bodies, the models’ used to describe the elastic behavior
consist of brick elements with three linear dof at each node,
shell and beam elements with three linear and three angular
dof as well as attached masses. Therefore, additional terms
have to be incorporated. A later consideration of additional
masses within the multibody formulation is also possible,
but results in shape vectors that do not correspond with
the eigenvectors of the complete body. In order to ensure
convergency, more shape functions have to be used which
results in longer computing times.

Introducing the RITZ separation into d’ALAMBERT’S
principle and considering the discrete formulation of the

finite element results leads to matrices based on sums over
the whole body that describe the interaction between rigid
body motions and elastic deformations. These matrices can
be assembled using simple summation statements

f ToaWEdm , f WTWsdm =

Zzoungm , EWEWgAm o3 =,y 2,
i

that have to be carried out over all nodes of the finite ele-
ment mesh (Johanni 1984, Franz 1993). z¢, are the com-
ponents of an arbitrary node of the finite element mesh in
its undeformed configuration (see Figure 2) and W, are the
component vectors of the employed mode shapes. Am rep-
resent the nodal masses, resulting from an HRZ lumping
(Cook, Malkus and Phlesha, 1989). These matrices will be
called elementary matrices. A way for incorporating the
neglected dof is illustrated in Figure 3, showing an elastic
body which consists of an elastic and a rigid part connected
to an element node. The vector z; indicates the position of

(8)

Figure 3. Elastic body with attached rigid body

the element node in its undeformed shape, 7.; is the elastic
deformation of the node and e the vector to an arbitrary
point U of the rigid body written with respect to coordinate
system P. The position of point U with respect to coordinate
system B is then given by

(o + Wq.,,)+(E + (5&';)) € & (zo+6&)+H(W — éB) qu,

where @ contains the corresponding angular nodal com-
ponents of the employed mode shapes. Applying this ex-
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panded expression for instance to the equations for the ele-
mentary matrix below yields

fzngEAm = f (350: + E:)

(W,j'" — (€2 0 —e&d] @)T) Am.

Considering the definitions of the center of gravity and the
inertia tensor as well as the discrete finite element results
this equation becomes

> (am zo. (WT = (frs. 0 —rs.]#)7) +

Amrsy — [—iu 0 — % (—faz +iyy + z':z)]) :

With this procedure all elementary components of the ma-
trices describing couplings between rigid body and elastic
vibrations can be expanded. The additional terms include
components of the vector to the center of gravity as well as
the components of the inertia tensor of the attached rigid
part. In the case of beam or shell elements without ad-
ditional masses this equation can be simplified, since the
vector to the center of gravity decays to zero.

With these adjustments a formulation has been derived
that enables the usage of beam and shell elements as well as
attached masses within the finite element model, and con-
siders the particularities of these elements in the equations
of motion for elastic multibody systems.

Finite element models

In the present model of the machine, the tub, the drum,
and the cabinet can be modeled elastically. Figure 4 and 5
show the finite element models for the tub and the drum.

The finite element model of the tub demonstrates the
utilisation of all the different element types explained above.
The tub itself is modeled through 8 node shell elements,
the bearing unit and the concrete counter weight through
20 node brick elements. The stator of the motor is incor-
porated through an attached mass that is connected to the
bearing unit through 2 node beam elements with increased
stiffness and reduced density. Instead of beams, so called
rigid link elements can be used (MARC 1997), which results
in convergency problems.

The drum model is of similar complexity compared to
the tub. The drum uses 8 node shell elements, the drum-
star 20 node brick elements, and the shaft 2 node beam
elements, whereas the pulley is only considered through an
attached mass. The influence due to an unbalance of the

concrete spring
counterweight suspension tub

tub

bearing

damper

suspension
stator

Figure 4. FE model of tub

drum

pulley

drumstar

Figure 5. FE model of drum

laundry is also taken into account.

The cabinet which is not imaged here is modeled using shell
and beam elements. Due to inaccuracies during the manu-
facturing process the side panels of the cabinet cannot be
modeled flat as featured in the technical drawing, but with
a small cavity to consider the enhancement of the eigenval-
ues. The interaction between the cabinet and the floor is
regarded by linear springs for the same reason.
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Since the RITZ separation requires shape functions sat-
isfying the geometrical boundary conditions, the finite el-
ement analysis has to be carried out with the same rigid
body dof as in the later multibody simulation.

Force elements

The different bodies of the machine are connected
through three different types of force elements. For the
springs a linear force law is used, allowing reaction forces
only in spring direction.

Friction damper

The friction damper significantly influences the dynam-
ical behavior of the machine. Its main task is to reduce the
rigid body motions of the tub in the lower speed range for
avoiding contact with the cabinet. As an unwanted side ef-
fect it excites higher machine orders due to the nonlinear
coherence between velocity and damping force. Especially,
in higher speed ranges this leads to elastic vibrations of
the tub and the cabinet. In addition, the damper consists
of two rubber bearings which are considered to be linear
due to the small displacements. Figure 6 shows a friction
damper which is typically used in washing machines.

Rubber
Bearing 1

Rubber
Bearing 2

Damper

Figure 6. Friction damper with rubber bearings

One way to consider the different effects of the damper
is to separate it into two independent bodies. The prob-
lem with this ad hoc solution is the mass of the tub and
the drum being about one hundred times higher than the
dampers mass which leads to very poor conditioned dif-
ferential equations. The model presented here neglects the
dynamics of the damper and uses only kinematical relations
to describe it as a single massless force element.

Assuming that the rubber bearings cannot transfer any
forces due to translatory motions and that the damper has
no torsional stiffness with respect to its y-axis (see Figure 6),
the force element can be stated using two angular degrees

of freedom for each rubber bearing and one linear for the
friction damper.

Figure 7. Kinematics of the friction damper

Figure 7 illustrates a damper attached between two bodies,
whereas one body is assumed to be translatory fixed for
simplicity. B; indicates the bodies in their initial and B:-
in a deformed configuration. The transformation matrix
A from coordinate system B; to system B; is given by
the columnwise disposition of the unit vectors of B written
with respect to B. Since all deformations were assumed to
be small the transformation matrix can be linearised as

App =E+ Ap = [ezr,eyr,ez:].
The unit vector in y -direction of rubber bearing 1 with
respect to the coordinate system of the undeformed config-
uration is given by

e &

Ber' Br 7
Bey, =—22=|1]=24e=]0
B, |Ber;B;t a v

Thus, with the unit vector described above the angular dis-
placements of bearing 1 can be derived, where a and v are
rotations with respect to the z- and z-axis of the bearing.

For the required velocities of the force element a sim-
ilar approach becomes feasible, but the equations are now
written with respect to the deformed configuration. The
relative linear velocity between attachment points B; and
B; is given by the equation below where » is an abbrevia-
tion of B."B. B, and w is the relative angular velocity of the
two points

Vz
B;AvB;B; =T+ wr=| vy
U
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Evaluating the two terms of this equation separately and
taking the angular velocity of body 1 into account yields
the desired velocities of bearing 1 and the friction damper

0 —w, 0 0 —W.r Vg

wy 0 —w, r]= 0 =10

0 w, 0 0 WeT Uy

2Aw=-| 0 | —wp, ,r=1|1v.
"\ -v, 0

The kinematical values for bearing 2 are obtained using the
same procedure.

The force law of the rubber bearings consists of two
linear rotary spring-damper statements

My =Ci24A¢1 3+ Dy 24w, 9,

whereas a nounlinear law is invoked for the friction damper.
In order to avoid a system with unilateral contacts
CouLoMB’s friction law is approximated through an arc
tangent function, yielding the force law below.

Frvction = "z"l:h'! arctan(sv )

Figure 8. Friction law

The forces acting on the bodies due to the bending mo-
ments within the bearings can be derived from the static
equilibrium of the complete damper.

Door gasket

The door gasket is modeled as a six dimensional spring-
damper element. Due to its complex geometry a finite el-
ement analysis has to be carried out to determine the co-
efficients of the stiffness matrix. Mooney-Rivlin material is
used to describe the rubber.

The analysis is done applying all possible displacements
in separate runs onto the model and calculating the neces-
sary reaction forces and moments. The influences of su-
perimposing several displacements concurrently are not in-
vestigated. Since the calculated effects due to geometrical
and material nonlinearities within the range of interest are
small, the characteristic curves are finally linearised. The
achieved stiffness matrix is of non-diagonal shape.

Since only a static analysis is performed, the damp-
ing coefficients of the force element have to be determined
through an adaptation between simulations and measure-
ments.

RESULTS

In order to verify the mechanical model a very detailed
experimental investigation of the washing machine was car-
ried out (Meys 1998). The examination was done using a
magnet with a mass of 0.6 kg to simulate an unbalance due
to the laundry. Since the position of the laundry within the
drum is of importance as well, three different locations were
investigated (see Figure 9). For a comparison of the results

mp tub 1

Figure 9. Experimental setup

presented below, a position of the unbalance in the front of
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the drum was chosen. All studies were performed, taking
the large angular speed of the drum as system input and
measuring the linear accelerations during a stationary run-
up on seven different points on the machine, five located on
the tub and two on the cabinet (abbreviated with mp in
Figure 9). The speed range between a minimal adjustable
value and the maximum spinning speed was subdivided into
three regions. The lower one is of interest for the rigid body
resonances of the tub and any influences due to elastic vi-
brations are neglectible. The intermediate region is of sub-
sidiary interest, since only a few elastic modes of the cabinet
with very small magnitudes are excited due to the nonlinear
behavior of the friction damper. The third range is of par-
ticular interest for the elastic vibrations. On the one hand
large, even visible oscillations of the cabinets side panel are
excited and on the other hand the additional unbalance of
the motor excites vibrations in an audible frequency band
due to the gear ratio of 11.25.

Since the reference value for all measurements is the an-
gular velocity of the drum, cascade plots respectively order
plots were established for evaluating the results.

Rigid Body Model

A comparison of the linear accelerations on measure-
ment point tub 2 in the lower speed range is shown in Figure
10, to demonstrate the quality of the rigid body model and
the modeling of the force elements. The calculation of the
measured fast fourier transforms (FFT) was done applying
a HANNING-window to avoid leakage effects, which bisects
the real magnitudes. Afterwards an energy correction was
performed to preserve the total energy of the measured time
signal and the transformed one according to PARSEVAL’s

Acceleration

Acceleration

Order

Figure 10. Order plot Acceleration x-Direction: Comparison of measurement
(left) and simulation (right) on mp tub 2

theorem. The still existing differences in the resulting mag-
nitudes were finally removed by multiplication with a con-
stant factor. Due to this second correction the total energy
of the measured system is not preserved and the different
spectra within the measured order plot appear to be wider
than the simulated ones.

It is obvious, that the simulation matches quite well
with the measurement, both qualitatively and quantita-
tively. The excitation of higher orders results from the non-
linearities of the friction damper. Additionally, the shape
of the first order is strongly influenced by the door gasket,
which legitimates the modeling efforts.

Elastic Deformations of the Drum

The first eigenfrequency of the drum is too high to be
excited by the unbalance forces. Figure 11 shows the static
displacement of the front of the drum over the complete
speed range. The parabolic shape of the curve results from
the fact that the unbalance force increases with 92, where
(1 is the speed of the drum. Due to the modeling technique
of the drum, the static displacement is superimposed by a
small oscillation.

The calculation of the drum deformation is a very im-
portant design criterion leading to large stresses within the
material and even to the failure of the structure. One ad-
vantage of the introduced modeling technique is that the
RITZ approximation can be reversed and applied as bound-
ary conditions to the finite element model to calculate the
stresses. Figure 12 exhibits the deformation of the finite
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Displacement

Drum Speed

Figure 11. Elastic displacement of the drum

element model of the drum, which have been recalculated
from the applied mode shapes and the simulation results.

Figure 12. FE model of the drum displacements

Elastic Vibrations of the Cabinet

Finally, the elastic vibrations of the cabinet are pre-
sented. The design parameters of the force elements of the
machine are chosen in a way that deformations of the tub
barely excite elastic vibrations of the cabinet. Thus, the tub
can be modeled as a rigid body and the motor unbalance
can be neglected.

The interaction between the feet of the cabinet and the
floor is considered in the finite element model by springs. In
order to receive comparable results with the measurements
it is necessary that all four feet are equally loaded. Figure
13 compares the measured and the simulated acceleration

in x-direction at point cabinet 2 which is in the center of
the side panel.

Acceleration

Drum Speed

Acceleration

Order

Figure 13. Order plot acceleration x-direction: comparison of measurement
(top) and simulation (bottom) on mp cabinet 2

Especially the first eigenfrequency is important, as it is
leading to large, even visible displacements. The vibrations
are basically excited by the friction damper and the door
gasket, since the resulting spring forces act mainly in the
plane of the side panels. Thus, displacements perpendicu-
lar to the plane result from effects of second order and can
be neglected for the present configuration (9). The missing
even orders in the simulation result from the fact that the
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only nonlinearity in the current model comes from the fric-
tion damper which has an odd FOURIER series expansion.

One effect of the side panel that can only be seen in
the speed plot is shown in Figure 14. Obviously, the ac-

Orum Spead

Figure 14. Speed plot measured acceleration x-direction

celeration is not symmetric to the x-axis of the plot which
results from the bended shape of the side panel. Due to this
the stiffnesses in positive and negative direction are not the
same. This effect can be regarded in the simulation by ap-
plying characteristic curves rather than the eigenfrequencies
of the modal analysis to assemble the stiffness matrix of that
body.

CONCLUSION

The presented model of a washing machine as an elastic
multibody system enables the analysis of the vibrational be-
havior, excited by the unbalance of the laundry and the mo-
tor. The simulation results determine the friction damper
as the main source for the excitation of higher machine or-
ders. The absence of some even machine orders point out
that additional nonlinearities have to be incorporated into
the present model. One improvement can be found in a
more detailed representation of the connection between the
tub and the concrete counterweight (see Figure 4), which is
currently modeled as a rigid link.

Additionally, the utilisation of finite element results as
shape functions for a R1TZ separation provide the possibility
of recalculating the stresses within the material.
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