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Abstract 
A new large spinning facility has been built in Germany representing a world class unique test facility for 
testing large rotating systems. In order to assess the capabilities of the system a validated Finite Element 
model is required. To obtain such a model a two-step procedure was applied: 

In a first step, vibration tests were conducted focusing on the rigid body frequencies of the resiliently 
mounted system as well as on its basic elastic behavior (natural frequencies, modal damping, and mode 
shapes). In a second step, a Finite Element model was created and subsequently validated with the help of 
the obtained vibration test data. 

The paper will present the testing approach and the model validation results obtained by application of 
computational model updating techniques. All in one the employed two-step procedure provided valuable 
insight into the dynamics of the facility next to a validated Finite Element model of high fidelity. 

1 Introduction 

A new large spinning facility (LSF) has been built in Germany. The LSF represents a world class unique 
test facility for testing rotating systems with diameters larger than 1.5 m up to 12,000 RPM. 

In order to assess the capabilities of the LSF system, and to verify that specifications are met, a proper 
understanding of its dynamics is crucial. One key issue in this context is to have readily available a 
validated Finite Element model of the LSF system. The Finite Element model can furthermore be used to 
tune the parameters of test vehicles in order to ensure the right behavior under test. Also, environmental 
protection aspects under operational loads can be assessed to guarantee integrity of the building and the 
LSF system itself. 

To obtain a validated Finite Element model of the LSF system a two-step procedure was applied: 

In a first step, vibration tests were conducted focusing on the rigid body frequencies of the resiliently 
mounted LSF system (mounted on an array of air springs) as well as on its basic elastic behavior (natural 
frequencies, modal damping, and mode shapes). In a second step, a Finite Element model of the LSF 
system was created and subsequently validated by means of the obtained vibration test data. 

Enormous challenges for the validation campaign were imposed by the very large overall mass of the 
system of approximately 1,600 tons and the gross dimensions of about 25 x 10 x 10 meters (length x width 
x height). 

Thus, for modal testing a combined approach of ambient (or environmental) excitation and classical 
hammer excitation was selected, in combination with special analysis techniques (output only modal 
analysis). Also, the expected low frequencies of the suspension system (< 1 Hz) demanded for specialized 
sensors, capable to accurately measure practically down to zero Hertz. 

This paper will show that the selected testing approach provided a rather consistent and reliable data base 
for subsequent Finite Element model validation. Furthermore, the model validation results obtained by 
application of computational model updating techniques will be presented. All in one the employed two-
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step procedure provided valuable insight into the LSF dynamics next to a validated Finite Element model 
of high fidelity. 

2 System Overview 

The LSF system in principle consists of four major parts: ferro concrete foundation, steel frame, vacuum 
vessel and drivetrain (figure 1). The foundation itself is mounted on multiple air springs in order 
resiliently decouple the facility from the building. The steel frame holds the test piece which is located in a 
vacuum vessel during operation while it is powered by the drivetrain. 

 

 
Figure 1: Survey of LSF system 

3 Obtaining the required test data basis 

3.1 Test strategy 

In order to obtain the required test data basis for subsequent model validation dedicated modal testing was 
performed for the LSF system. A special challenge was that the large mass of the system of around 1,600 
tons is usually prohibitive to classical shaker or hammer driven experimental modal analysis. Thus, 
ambient (or environmental) excitation1 was used in addition to classical hammer excitation, in 
combination with special analysis techniques (output only modal analysis). Also, the expected low 
frequencies of the suspension system of the foundation (< 1 Hz) demanded for specialized sensors, 
capable to accurately measure practically down to zero Hertz. 

                                                      
1 Ambient excitation is usually randomly generated by the environment of the system to be tested. Sources can for instance be 

pedestrians or road noise on the system itself or in the vicinity of the system. If the ambient excitation by the environment is 
not sufficient to properly excite the system, additional ambient excitation of the system can be introduced for instance by 
walking, jumping, or dropping weights on the system. A key feature of ambient excitation techniques is that neither location 
nor characteristics of the excitation need to be known. 
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Therefore three separate tests were designed in order to capture all relevant dynamic effects: an ambient 
excitation test of the foundation, an ambient excitation test of the foundation and steel frame, and a 
hammer excitation test of the steel frame. A survey of the tests is given in figure 2. 

 

 

Figure 2: Survey of test procedure 

The first test solely focused on the low frequent rigid body behavior of the suspended LSF system (rigid 
body frequencies and modes). Specialized sensors and ambient excitation were used to obtain the required 
information. The second test aimed at capturing the basic elastic behavior of the LSF system, especially 
the interaction of foundation and the steel frame. The data obtained here can later on aid to properly tune 
the foundation stiffness and the interface between foundation and steel frame. The third test should finally 
give detailed insight into the behavior of the steel frame itself. 
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3.2 Test Planning 

Before testing, thorough test planning was performed, that primarily focused on a proper definition of 
measurement and excitation locations as well as on an assessment of the required measurement 
parameters. It utilized data from a Finite Element (FE) analysis, and enabled not only the test design but 
also considerably simplified the later correlation with the analytical results (Finite Element model and test 
model ‘match’). Test planning covered the following aspects (see also [1]): 

 

 selection of relevant target modes 
 selection of measurement degrees of freedom with respect to 

- essential test information 
- sufficient spatial resolution of the target modes (linear independence) 
- coincidence of measurement and FE model nodes 
- accessibility of the measurement nodes 
- redundancy of the measurement degrees of freedom 
- robustness of the test model 

 selection of exciter positions (if possible, simultaneous excitation of all target modes) 
 sufficient frequency resolution (for proper identification of modal data) 

 

Test planning was conducted utilizing a special MATLAB® based software package (ICS.sysval, [2]). 
Main goal was to provide best possible test models and a priori test setup specifications in order to obtain 
highly reliable test data. 

3.3 Test item 

Two typical views of the test item are shown in figure 3 and figure 4. A special challenge was imposed by 
the gross dimensions of about 25 x 10 x 10 meters (length x width x height). Especially logistics and 
instrumentation (see also figure 5) had to be planned ahead very carefully in order to guarantee for a 
smooth and undisturbed flow of the test campaign. 

 

 
Figure 3: Side view of test item 

2122 PROCEEDINGS OF ISMA2012-USD2012



 
Figure 4: View from top on vessel 

 
Figure 5: Mounting of sensors on top of steel frame 

3.4 Ambient excitation testing 

Ambient excitation testing was performed by ICS in cooperation with the BAM (Bundesanstalt für 
Materialprüfung). For ambient excitation testing sensors were attached to the LSF system according to the 
test planning results. To identify the lower rigid body frequencies and mode shapes of the foundation and 
its attachments, the relevant measurements degrees of freedom were measured with specialized 
accelerometers, capable of measuring down to very low frequencies. For the higher natural frequencies 
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and mode shapes, electro dynamic velocity sensors (geophones) were used. In order to excite the LSF 
system four different excitation types with different frequency contents were applied: 

 

 pure ambient (environmental) excitation 
 impulse excitation by jumping (on foundation), three men simultaneously 
 impulse excitation (on foundation) with falling weight of about 30 kg from about 1.5 m 
 impulse excitation (on foundation) with 5.4 kg heavy sledge hammer 

 

During the test campaign continuous time data were sampled with durations from several minutes 
(impulse excitations) up to 11.4 hours (pure ambient excitation). For the impulse excitation measurements 
multiple impulses were applied within the defined overall measurement time with delays from 20 to 80 
seconds, depending on the used block size and sampling frequency. 

Ambient excitation testing finally provided eight rigid body type modes of the system on air springs up to 
about 2.5 Hz. Also, seven elastic modes of the complete system (foundation, steel frame) could be 
identified up to about 40 Hz. 

3.5 Hammer excitation testing 

During hammer excitation testing it was found, that a rather good excitation of the entire LSF system 
could be achieved which was not expected a priori. Thus, to obtain additional and consistent information 
on the foundation as well, the original test model (steel frame only) was extended such that measurement 
nodes on foundation, vessel and drivetrain were added (figure 6). 

 

 
Figure 6: Extended test model for hammer excitation testing 

Typical measured frequency response functions (imaginary parts) are show in figure 7. Clear and 
pronounced peaks with moderate damping can be observed in the entire frequency range of interest. 
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Frequency 

Figure 7: All measured frequency response functions for LSSF, typical hammer excitation measurement 

The experimental modal analysis was primarily focused on the significant resonance peaks up to a defined 
frequency and provided about 20 elastic mode shapes of the LSF system. All in one, data with mostly 
good to very good confidence ratings could be extracted. Furthermore the corresponding mode shapes 
show plausible motions and are rather clean and undisturbed. 

3.6 Comparison of ambient and hammer excitation 

The corresponding elastic modal data identified from ambient and hammer excitation testing were 
compared. Table 1 lists the correlation results and figure 8 shows the MAC values of the mode shapes. All 
in one very consistent results could be obtained which increases the confidence in the identified modal data. 

 

# Ambient # Hammer # Freq. Dev. [%] MAC [%] 
1 9 1 -0.2 80.6 
2 10 2 -0.6 92.3 
3 11 3 0.1 92.3 
4 12 4 0.2 98.6 
5 13 5 0.2 49.3 
6 14 6 0.1 94.8 
7 15 7 0.1 84.7 

Table 1: Correlation of ambient and hammer test 

 
Figure 8: MAC matrix for ambient and hammer test 
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4 Model validation 

4.1 Theory overview 

The foundation for model validation is based on updating physical stiffness, mass and damping parameters 
by a parameterization of the system matrices according to equations (1) (see also [3-4]): 

 

 K = KA +  i Ki , i = 1 ... n (1a) 
 M = MA +  j Mj , j = 1 ... n (1b) 
 D = DA +  k Dk , k = 1 ... n (1c) 
 
with: KA, MA, DA initial analytical stiffness, mass and damping matrices 
 p = [i j k] vector of unknown design parameters 
 Ki, Mj, Dk given substructure matrices defining location and type of model uncertainties 
 

This parameterization permits the local adjustment of uncertain model regions. By utilizing equations (1) 
and appropriate residuals, which consider different test/analysis deviations, the following objective 
function can be derived: 

 

 J(p) = zT W z + pT Wp p  min (2) 
 
with: z residual vector 
 W, Wp weighting matrices 
 

The minimization of the objective function (2) yields the desired design parameters p. The second term on 
the right hand side of equation (2) is used for constraining the parameter variation. The weighting matrix 
must be carefully selected, as for Wp >> 0 no parameter changes will occur (see also [3]). 

The residuals z = zT - z(p) (zT: test data vector, z(p): corresponding analytical data vector) are usually 
nonlinear functions of the design parameters. Thus, the minimization problem is also nonlinear and is to 
be solved iteratively. One solution is the application of the classical sensitivity approach (see [4]). Here, 
the analytical data vector is linearized at point 0 by means of a Taylor series expansion truncated after the 
linear term. Proceeding this way leads to: 

 

 z = z0 - G0 p (3) 
 
with: p = p - p0 design parameter changes 
 z0 = zT - z(p0) test/analysis deviations at linearization point 0 
 G0 = z/pp=p0 sensitivity matrix at linearization point 0 
 p0 design parameters at linearization point 0 
 

As long as the design parameters are not bounded the minimization problem (2) yields the linear problem 
(4). The latter is to be solved in each iteration step for the current linearization point: 

 

 (G0
T  W G0 + Wp) p = G0

T  W z0   (4) 
 

For Wp = 0 equation (4) represents a standard weighted least squares approach. Of course, any other 
mathematical minimization technique can be applied for solving equation (2). 
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In contrast to the assembly of the analytic stiffness and mass matrix, the generation of the analytic 
damping matrix is usually a difficult task. For treating system damping in an update process modal 
damping parameters can be utilized alternatively. For further discussions on this topic it is referred to the 
literature (see for instance, [3-5]). 

Commonly, the eigenvalue and the eigenvector residuals are employed. Here, the analytical eigenvalues 
(squares of the eigenfrequencies) and eigenvectors are subtracted from the corresponding experimental 
results. The residual vector in this case becomes: 

 


n1,...,i ,     

0
0 










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iTi

iTi

xx
z

  (5) 

 
with: Ti, i test/analysis vectors of eigenvalues 
 xTi, xi test/analysis mode shape vectors 
 

The correlation between analytical data and test data is accomplished by means of the MAC value of the 
eigenvectors: 

 

 

 
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xx

   
 

: 
2

T
T

T
T

T
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which states the linear dependency of two vectors xT, x. A MAC value of one denotes that two vectors are 
collinear and a MAC value of zero indicates that two vectors are orthogonal. 

The sensitivity matrix for the residual vector introduced in equation (5) is given by equation (7). The 
calculation of the partial derivatives can be found for instance in references [3-4]. 
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If real eigenvalues and eigenvectors are employed, the adjustment of damping parameters is not possible. 
The corresponding sensitivities equal zero since the real eigenvalues and eigenvectors depend solely on 
the stiffness and the mass parameters of the system. 

4.2 Model validation strategy 

Model validation is accomplished here through computational model updating (CMU) of physical 
parameters (stiffness and inertia parameters) of the FE model by minimizing the deviations between the 
identified and the analytical eigenvalues and mode shapes. It is presumed that all deviations between test 
and analysis are exclusively based on uncertainties of the FE model. 

CMU is conducted by a special MATLAB® based software package (ICS.sysval, [2]). This software tool 
takes advantage of the analysis capabilities of MD/MSC.NastranTM, particularly the sensitivity module 
within ‘Solution 200’ (optimization), which enables the handling of large scale FE models. The necessary 
parameter changes are directly applied to the so called ‘bulk data’ section of the MD/MSC.NastranTM 
input file. Typical parameters are for instance shell thicknesses, beam section properties, Young’s moduli, 
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and densities. However, virtually all physical parameters, which can be considered in an eigenvalue and 
eigenvector sensitivity analysis by MD/MSC.NastranTM, can be used for model updating. 

After successfully updating the stiffness and inertia properties, physical or modal damping parameters can 
be adjusted subsequently by minimizing the deviations in the resonance regions between measured and 
simulated frequency response functions. However, this is not covered here. 

A common difficulty in computational model updating is the proper choice of appropriate model 
parameters. Besides selection with engineering experience automated methods may be applied [6], which 
currently do not deliver a reliable prediction. Another possibility to select parameters is provided by a 
sensitivity analysis. Here the sensitivity matrix according to equation (7) is computed for a set of suitable 
parameters. In a subsequent investigation those parameters are identified, which have a significant 
influence on the analysis results. However, the sensitivity analysis does not supply any information on the 
physical relevance of a particular parameter but detects merely its potential to change the analysis results. 

4.3 Model validation results 

Model validation was conducted for the FE model of the LSF system as shown in figure 9. Utilizing the 
available EMA data an initial test/analysis correlation was performed in order to assess the quality of the 
initial model. The results are presented in table 2 and figure 10. Although the MAC correlation was 
already rather good, the correlation shows high frequency deviations. Thus further steps were taken to 
improve the situation. 

 

 
Figure 9: FE model of LSF system 

Steel frame 

Foundation 

Vessel 
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# EMA # FEA # Freq. Dev. [%] MAC [%] 
1 1 7 -27.38 90.50 

2 2 8 -31.64 97.09 

3 3 9 -29.77 93.49 

4 4 10 -30.83 97.48 

5 5 14 -18.86 95.06 

6 6 13 -21.50 95.43 

7 7 15 -18.61 82.74 

8 8 16 -20.18 96.26 

9 10 19 -17.92 96.32 

10 11 20 -17.80 79.62 

11 12 22 -14.09 73.69 

12 14 25 -11.31 89.30 

13 17 27 -13.25 82.94 

14 18 26 -16.22 94.43 

15 19 28 -11.55 77.02 

16 21 32 -9.47 85.76 

17 22 35 -6.42 83.08 

Table 2: Initial test/analysis correlation for LSF system 

 
Figure 10: Initial MAC matrix for LSF system 

To improve the test/analysis correlation, the initial model was at first remodeled before application of 
CMU. Then CMU was applied. After sensitivity analysis and parameter localization, several CMU runs 
were made with different promising parameter sets utilizing the ICS.sysval software. Finally six 
parameters were updated: figure 11 gives a survey of the model regions and properties taken into account 
during CMU. The obtained parameter changes were for some regions rather high. However, the 
corresponding regions were insecure with respect to their actual stiffness properties. To this extend the 
changes could be physically interpreted. Also, modifications to the FE model are not planned in the future, 
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thus parameters can also be accepted that – to a certain extend – function as mathematical substitute 
parameters. 

 

 
Figure 11: Overview of selected CMU parameters 

The final correlation results for the LSF system after CMU are presented in table 3 and figure 12. It can be 
noted that the frequency deviations can effectively be reduced, and the MAC correlation is improved 
significantly. However, for the first two modes the percental frequency deviations are still not satisfactory. 
Considering the fact that the absolute deviations were smaller than 2 Hz, this is acceptable. 

 

# EMA # FEA # Freq- Dev. [%] MAC [%] 
1 1 7 -12.99 91.55 
2 2 8 -8.55 97.97 
3 3 9 -1.10 98.22 
4 4 10 -3.08 99.15 
5 5 13 -0.53 95.86 
6 6 14 -0.89 97.27 
7 7 15 -0.51 80.33 
8 8 16 -3.39 97.94 
9 10 19 -1.14 99.15 

10 11 20 1.00 93.51 
11 12 22 2.75 73.21 
12 14 24 5.24 91.22 
13 15 23 0.01 71.41 

Steel frame (Young’s Modulus) 

Steel frame base plates (t/rho invers) 

Steel frame interface plates (t/rho invers)

Vessel (mass/inertia tensor) 

Concrete front (Young’s Modulus) 

Concrete rear (Young’s Modulus) 
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# EMA # FEA # Freq- Dev. [%] MAC [%] 
14 17 27 3.58 94.99 
15 18 26 -1.07 97.70 
16 19 28 1.01 85.86 
17 21 30 1.26 91.70 
18 22 33 3.84 91.09 

Table 3: Test/analysis correlation after CMU 

 

 

Figure 12: MAC matrix after CMU 

4.4 Rigid body frequencies 

The LSF system is mounted on an array of air springs, and the air springs are already incorporated in the 
FE model. Yet, the rigid body frequencies needed to be adjusted to the test frequencies obtained from 
ambient testing. This was accomplished by manually tuning the spring stiffnesses such that the lateral and 
vertical rigid body frequencies of the test are met. However, a clear pairing of the rigid body modes from 
test and analysis could not be achieved. A possible explanation may be that some test results were rather 
insecure because of excitation difficulties, especially for the lateral directions. 

5 Summary and conclusion 

This paper presented a two-step testing approach and model validation results for a new large spinning 
facility (LSF) that has been built in Germany. The employed two-step test procedure provided consistent 
test data and valuable insight into the rigid body and elastic dynamics of the LSF system. Model validation 
utilizing computational model updating techniques in addition yielded a FE model of high fidelity. All in 
one the combination of ambient and hammer excitation testing proved to be very effective for the analyzed 
large scale LSF system. 
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