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ABSTRACT

In this paper a model validation strategy is presented that
integrates computational model updating techniques. A
special in-house software package is utilized that makes
use of a wide range of the analysis capabilities of a
commercial Finite Element solver, especially the eigenvalue
and the sensitivity module. The software package thus
allows for efficient computational model updating of large
scale Finite Element models.

At first the basic theory is summarized. Then the model
validation strategy is explained. Finally an application to an
automotive transmission will underline the effectiveness of
the procedure.

NOMENCLATURE

0 linearization point

A ‘initial’

dof degree of freedom

EMA experimental modal analysis
FEA Finite Element analysis

i j indices

J objective function

T ‘test’

G sensitivity matrix

H(jw) frequency response vector/matrix
K, M stiffness/mass matrices

p design parameter vector

W, W, weighting matrices

X mode shape vector
z residual vector

a, B design parameters

w eigenvalue vector

13 modal damping degree vector

1 INTRODUCTION

To validate Finite Element models, test data, e.g. from an
experimental modal analysis, may be utilized. If the

deviations between test and analysis are not acceptable,
the idealization of the investigated elastomechanical system
must be reviewed. If the structure of the Finite Element
model with respect to discretization, chosen element types
etc. is correct, the test/analysis deviations can be minimized
by modification of appropriate physical model parameters
(shell thicknesses, Young's moduli, mass densities etc.). If
only single parameters are considered a ‘manual’ update
based on engineering skills may be successful. However,
proceeding this way bears limits for real elastomechanical
systems due to the large number of parameters to be
considered. Here computational model updating techniques
must be applied which allow for a simultaneous update of
multiple model parameters.

In this paper a model validation strategy is presented that
integrates computational model updating techniques. A
special MATALB® based software package is utilized, that
has originated at the University of Kassel, Lightweight
Structures and Structural Mechanics Laboratory, Germany
and is now maintained in cooperation with ICS. The
software makes use of a wide range of the analysis
capabilities of MSC.Nastrand, especially the eigenvalue
solver and the sensitivity module. The software package
thus allows for efficient computational model updating of
large scale Finite Element models.

At first the basic theory is summarized. Then the model
validation strategy is explained. Finally an application to an
automotive transmission will underline the effectiveness of
the procedure.

2 MODEL UPDATING THEORY
2.1 Updating of physical parameters

The basis for computational model updating of physical
stiffnress and mass parameters is the parameterization of
the model matrices according to equations (1) (see
references [4], [5]). This parameterization allows for local
updating of uncertain model areas.



K=Kat+YaiKi , i=1.n4 (1a)
M=Ma+3Y (M, j=1l.ng (1b)
with:

Ka, Ma initial analytical stiffness/mass matrices

p=[aiB] vector of unknown design parameters
Ki, M; given substructure matrices defining location and
type of model uncertainties

Using equations (1) and appropriate residuals (containing
different test/analysis differences) the following objective
function can be derived:

Jp)=02"WAzZ+p"W,p — min )

with: Az
W, Wp

residual vector
weighting matrices

The minimization of equation (2) yields the desired design
parameters p while the second term is used to constrain the
parameter variation. The weighting matrix W, has to be
selected with care since for W, >> 0 no design parameter
changes will occur.

The residuals Az = z7 - z(p) (zr: test data vector, z(p):
corresponding analytical data vector) are usually nonlinear
functions of the design parameters. Thus the minimization
problem is also nonlinear and must be solved iteratively.
One way is to apply the classical sensitivity approach (see
reference [2]) where the analytical data vector is linearized
at point 0 by a Taylor series expansion truncated after the
first term. Proceeding this way leads to:

Az = Azo - Go Op 3
with:

Ap =p-po design parameter changes

Dzo=7z7-2z(po) test/analysis difference at linearization point O
Go=0z/0pl=,  Sensitivity matrix at linearization point 0

Po design parameter vector at linearization

point 0

If the design parameters are not bounded the minimization
problem (2) leads to the linear problem (4) which has to be
solved in each iteration step for the actual linearization
point.

(GoW Go + Wp) Ap = Go W Azg 4

For Wy, =0 equation (4) represents a standard weighted
least squares problem. Of course any other mathematical
minimization technique may be applied as well to solve
equation (2).

Two important residuals are natural frequency and mode
shape residuals. The residual vector in this case takes the
form:

[do; — wl
bzy=p " )
z E[XT_X%

with:
wr, w test/analysis vectors of natural frequencies

X1, X test/analysis mode shape vectors

The sensitivity matrix for the residual vector introduced in
equation (5) is given in equation (6).

_ Pw/opO )
Co = Box10pH

For the calculation of the derivatives please refer to
references [4], [5].

2.2 Updating of modal parameters

In order to update modal damping parameters the classic
sensitivity approach can also be applied. The residual in this
case is:

Az, = [H, (jo) - H(jo)], @)

with: Hr(jw) measured frequency response
H(jw) analytical frequency response

Partial differentiation of the analytical frequency response
with respect to the modal damping degrees yields the
sensitivity matrix:

CBH(jw) O s

G, = 8
0 o8 H;

with: & vector of modal damping degrees

The calculation of the sensitivity matrix according to (8) is
very simple if proportional damping is assumed. A more
detailed introduction can be found in reference [4].

3 MODEL VALIDATION

Computational model updating techniques can be utilized in
order to validate FE models. By updating multiple selected
parameters of the model simultaneously a minimization of
the test/analysis differences can be achieved.

The model is validated in two steps:

1. updating of stiffness and mass properties (physical
parameters)
2. updating of modal damping (modal parameters)

In a first step only stiffness and mass properties (physical
parameters) are updated by minimizing the test/analysis
differences e. g. of eigenvalues and mode shapes. A
special MATLAB® program is utilized here that takes
advantage of the MSC.NastranO analysis capabilities (in
particular the sensitivity module). Thus large scale FE
models can be processed. The parameter changes are
directly applied to the ‘Bulk Data’ section (the section in
which the FE model is defined) of the MSC.NastranO input
deck. Proceeding this way allows for an update of any
physical parameter that can be defined in MSC.Nastran



(e. g. shell thicknesses, beam section properties, Young's
moduli, mass densities).

In order to handle complex elastomechanical systems a
decomposition into components is usually necessary
(reduction of uncertain parameters). The components are
individually updated and the quality of the (modified)
assembly is assessed subsequently. If the model quality is
not yet sufficient further updating may be performed
considering only the interface parameters (e. g. stiffnesses
of connection elements).

A central problem when utilizing computational model
updating is to select the design parameters. Next to
engineering judgement computational localization methods
may be applied (see e. g. [3]).

Another possibility for parameter selection is to determine
the most sensitive design parameters by performing a
sensitivity study. Here the sensitivity matrix according to
equation (6) is calculated for multiple design parameters. A
subsequent investigation of the sensitivity matrix can help to
detect parameters which allow for a significant change of
the analytical model behavior. However, the sensitivity
study does not allow to assess the physical relevance of a
design parameter. It merely reflects a design parameter’s
potential to change the considered behavior of the model.

If dynamic analyses are to be conducted, modal damping
(modal parameters) may be updated in a second step. Here
the differences between measured and analytic frequency
responses are minimized in the vicinity of the resonance
peaks. This is accomplished utilizing another special
MATLAB® program. The overall goal is to achieve high
quality FE analysis predictions (at least in the covered
frequency range) and thus a validated model.

An appropriate experimental data basis is very important for
the success of subsequent computational model updating.
Thus thorough test design must be performed in advance.

When using experimental modal analysis data, test design
should cover the following aspects:

= selection of target modes
= selection of measurement dof w. r. t.:
- coincidence of measurement and FE dof
- sufficient spatial resolution of the target modes
= selection of exciter locations
= definition of frequency resolution

Selection of target modes:

In order to obtain sufficient information w. r. t. the global
stiffness of the model all global elastic modes in the
considered frequency range should be selected as target
modes. I. e. these modes are to be excited and observed in
the test. In addition, sufficient spatial resolution of all elastic
modes in the considered frequency range should be
provided in order to avoid spatial aliasing in any case.

Selection of measurement dof:
Selection of measurement dof is performed in three steps:

1. principal assessment of measurement
information

2. selection of measurement dof based on coincidence with
FE nodes and accessibility

3. check of validity of selected measurement dof

required

A principal assessment of necessary measurement
information is made utilizing a special in-house pickup-
selection software which is based on a maximum linear
independence criterion of the mode shapes. With the
knowledge from the principal assessment the final selection
is made and checked by calculating the Auto-MAC of the
target modes at the selected measurement dof (see
reference [6]).

Selection of exciter locations:

In order to determine the optimal exciter locations,
frequency responses are calculated for the selected
measurement dof. Candidate exciter locations are pre-
selected w. r. t. their ability to excite the target modes using
an in-house exciter-selection software (see reference [6]).
For each candidate exciter location univariate mode
indicator functions are calculated according to [1]. Based on
these mode indicator functions the exciter locations are
chosen such that every target mode is sufficiently excited by
at least one of the exciters.

Frequency resolution:

If the modal damping of the first elastic modes can be
estimated, a minimum frequency spacing can be derived
e. g. from response calculations. This is mandatory in order
to acquire enough data for the subsequent experimental
modal analysis algorithms.

4 EXAMPLE: AUTOMOTIVE TRANSMISSION

The procedure is demonstrated by way of an automotive
transmission housing, Fig. 1. Goal is to properly predict the
dynamics of the housing in the frequency range from zero to
2000 Hz. The updated model shall afterwards be utilized to
investigate alternative modeling strategies of the gear set.

The complete model consists of 19800 nodes and 16833
elements (shell and volume elements). It is assembled from
a front (12925 nodes and 11008 elements) and a rear
housing (6670 nodes and 5742 elements). The bolt
connection of the two components is idealized with beam
elements.

4.1 Experimental Modal Analysis

For the two components and for the assembly individual
free/free vibration tests with subsequent experimental
modal analyses were performed. Data were acquired from
zero to 3000 Hz. However, above 2000 Hz the confidence
in the identified modal data is rather low since due to high
modal density and increasing damping influence EMA



inherent mode separation problems occurred. A possible
poor correlation above 2000 Hz is thus not necessarily
caused by a lack in FE model quality - it may also result
from a more or less erroneous experimental data base
(especially the mode shapes).

Fig. 1: FE models, components and assembly
(BMW, Munich, Germany)

4.2 Initial correlation

The correlation of test and analysis data is checked via the
MAC value. The results are presented in tables 1 to 3. Fig.
2 shows a visualization of the MAC matrix for the assembly.

Table 1: Front housing — initial correlation

FEA | EMA Frequency [Hz] Dev. [%] | MAC [%]
#Y # FEA EMA (> 60 %)
1 1 381.04 | 388.01 -1.80 96.10
2 2 411.25 | 417.01 -1.38 94.02
3 3 856.00 | 874.49 -2.11 96.61
4 4 955.91 | 995.68 -3.99 97.96
5 5 1461.37 | 1501.41 -2.67 95.28
7 6 1732.01 | 1717.42 0.85 81.58
6 7 1690.71 | 1841.45 -8.19 61.21
8 8 1896.28 | 2023.81 | -6.30 75.32

 without rigid body modes.

Table 2: Rear housing - initial correlation

FEA | EMA Frequency [Hz] Dev. [%] | MAC [%]
#Y # FEA EMA (> 60 %)
1 1 495.87 | 520.52 -4.74 98.54
2 2 562.51 | 578.63 -2.79 98.72
3 3 1152.05 | 1163.75 | -1.01 96.82
4 4 1336.25 | 1356.05 | -1.46 94.05
5 5 1664.34 | 1769.70 -5.95 96.81
9 9 2338.46 | 2371.01 | -1.37 82.63

Y without rigid body modes.

Table 3: Assembly - initial correlation

FEA | EMA Frequency [Hz] Dev. [%] | MAC [%]
#Y # FEA EMA (> 60 %)
1 1 468.86 | 505.87 -7.32 89.47
2 2 494.31 531.61 -7.02 82.27
3 3 862.95 | 886.39 -2.64 97.56
4 4 959.60 | 1002.81 -4.31 94.68
5 5 1036.44 | 1225.14 | -15.40 72.27
6 6 1220.77 | 1342.71 -9.08 79.63
8 8 1361.99 | 1439.23 -5.37 70.40
9 10 1418.46 | 1603.33 | -11.53 78.30
12 12 1734.00 | 1740.89 -0.40 75.76
11 13 1616.47 | 1845.28 | -12.40 67.31
13 14 1760.52 | 1941.11 -9.30 65.08
14 15 1910.21 | 2041.99 -6.45 75.00
21 19 2298.01 | 2382.90 -3.56 66.24
Y without rigid body modes.
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Fig. 2: Assembly — initial MAC matrix

In the frequency range of interest the correlation is already
quite good for the components. For the assembly the level
of MAC values is relatively low above 1000 Hz. In addition
larger frequency deviations can be found. Especially FEA
mode 5 (global bending about vertical transmission axis)
deviates about 15 % from the EMA result.

4.3 Updating of physical parameters
4.3.1 Components

For the components multiple updating runs were performed
using different design parameter sets. The best results
could be produced by updating only Young’s moduli of
selected FE model areas (the updating of Young’s moduli
bears the advantage of not altering the overall mass of the
FE model). It was found that some parameters changed
rather excessively. This is an indicator that the parameters
have lost their physical significance. The resulting model
thus plays the role of a substitute model that fulfills the
requirement of reproducing the test data. Since - for this
application - a proper modeling of the housing dynamics
was mandatory the changes were retained and accepted.



A typical selection of design parameters can be found in
Fig. 3; a representative updating run is presented in Fig. 4.
It can be observed that the mean frequency deviation tends
towards zero and that the standard deviation is reduced.
This is typical for computational model updating.
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Fig. 3: Front housing - design parameters (Young's
moduli)
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Fig. 4: Front housing - typical updating results

frequency deviation

— mean
) —— standard deviation
g1 T a
O\/\ﬁ
-1 . . .
1 2 4 6 8 10
iteration step
MAC value
100 ; . . !
. | — mean
80l || — standard deviation
_. 60
X
— 40t
20p
0 —
1 2 4 6 8 10

iteration step

Fig. 4 (cont.): Front housing - typical updating results

4.3.2 Assembly

For the assembly multiple updating runs were performed as
well. The best results could be produced by updating the
sections (A) and the area moments of inertia (11/12) of the
connecting beam elements.

The design parameter changes can be found in table 4.
Especially the extensive change of the area moments of
inertia is to be noted here. The resulting design parameters
again play the role of substitute parameters which are
required to model the real connectivity stiffness.

Table 4: Assembly — design parameter changes

Param.| Change | |Param.| Change | [Param.| Change
[%] (%] [%]

A1 80.41 As -98.82 A1 | 255.67

Ay 83.44 Az 28.04 11101 | 27577403

Az 113.40 Ag 43.41 12111 | 10551354

Aq 397.78 Ao 28.04
As -52.48 Ao 28.04

The correlation after updating is found in table 5; the
corresponding MAC matrix is presented in Fig. 5. FEA
modes 1 through 14 and 17 can be paired while the MAC
values are mostly higher than 80 %. Except for modes 11,
13 and 14 the frequency deviations are smaller than 3 %.
Mode 5 (global bending about vertical transmission axis)
can now be paired with a frequency deviation of less than
3 % (over 15 % before updating) and a MAC value of over
90 %. EMA mode 9 cannot be paired to analytical results.
However, this mode was ranked less trustworthy during the
modal extraction process and can be neglected. All in all a
very good correlation in the frequency range up to 2000 Hz
could be achieved.

Beyond 2000 Hz practically no correlation can be found.
However, because of the low confidence in the test data
base in this frequency range, no definitive assessment of
the FE model quality can be made here anymore.



Table 5: Assembly — correlation after updating

FEA | EMA Frequency [Hz] Dev. [%] | MAC [%]
#Y # FEA EMA (> 60 %)
1 1 505.16 | 505.87 -0.14 88.64
2 2 527.44 531.61 -0.78 81.25
3 3 883.14 | 886.39 -0.37 97.74
4 4 986.44 | 1002.81 -1.63 95.06
5 5 1194.50 | 1225.14 -2.50 90.36
6 6 1309.20 | 1342.71 -2.50 92.19
7 7 1389.28 | 1415.86 -1.88 86.72
8 8 1422.50 | 1439.23 -1.16 84.07
9 10 1556.22 | 1603.33 -2.94 86.75
10 11 1651.55 | 1695.16 -2.57 75.83
12 12 1772.60 | 1740.89 1.82 80.21
11 13 1740.83 | 1845.28 -5.66 67.91
13 14 1857.76 | 1941.11 -4.29 74.58
14 15 1976.44 | 2041.99 -3.21 65.59
17 17 222415 | 2258.11 -1.50 64.38
Y without rigid body modes.
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Fig. 5: Assembly — MAC matrix after updating

4.4 Updating of modal parameters

Updating of modal damping degrees of the assembly is
performed in a last step. The identified EMA damping
values serve as starting values here. Since the damping
update is based on a minimization of response deviations at
the resonances, only the damping degrees of the 15 paired
modes may be updated. The results are listed in table 6.

Fig. 6 shows the measured and calculated mean value of
response amplitudes before and after updating (radial
excitation at the front flange of the assembly). The updating
of physical parameters significantly improves the response
behavior. Even above 2000 Hz an improvement can be
noted which increases the confidence in the updated model.
The updating of modal damping degrees reduces the
deviations even more. Here the overall amplitude level of
measured and calculated responses is adjusted. All
together the model is validated up to about 2000 Hz.

Table 6: Results of damping update
EMA # 1 2 3 4 5

EMA damp. [%] | 0.23 | 0.32 | 0.27 | 0.29 | 0.25
updated damp. [%] | 0.34 | 0.28 | 0.31 | 0.34 | 0.63

EMA # 6 7 8 9 10
EMA damp. [%] | 0.31 | 0.34 | 0.55 | 0.66 | 0.34
updated damp. [%] | 0.35 | 0.22 | 0.55 | 0.32 | 1.07

EMA # 11 | 12 | 13 | 14 | 17
EMA damp. [%] | 0.44 | 0.58 | 0.63 | 0.36 | 0.92
updated damp. [%] | 1.15 | 0.58 | 0.63 | 0.85 | 1.03
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Fig. 6: Frequency responses before / after updating

5 CONCLUSIONS

By way of an automotive transmission housing the
effectiveness of a model validation strategy that integrates
computational model updating techniques is demonstrated.

For the transmission housing, which is to be utilized to
investigate alternative modeling strategies of the gear set, a
very good correlation of test and analysis data could be
achieved in the frequency range from zero to about
2000 Hz. The model can therefore be considered validated
in this frequency range. Even above 2000Hz an
improvement of the frequency response can be noted,
which increases the confidence in the updated model.
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