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ABSTRACT. This paper introduces an automated approach to
pick-up and exciter placement for modal testing purposes and its
application to a car body component. It is a two step procedure
which in the first step localizes a subset of structural degrees of
freedom of an analytical model as measurement points such that
the linear independence of the mode shapes to be measured is
maximized. In the second step a given number of exciter locations
are chosen among the selected measurement points which allow
an excitation of the mode shapes. The approach is based on the
QR-decomposition of the modal matrix and the QR-
decomposition of the product of the mass matrix with the modal
matrix.

NOMENCLATURE

α force factor
H(ω) Frequency Response Function
Λ1(ω) multivariate mode indicator function
ω circular frequency

A, E, Q, R matrices
ai, ri, qi column vectors
∆ matrix of modal damping values
F force matrix
I unity matrix
M mass matrix
X modal matrix
xi mode shape vector
ω0

2 matrix of eigenvalues

1 INTRODUCTION

An important goal in modal testing is to perform a test such that
the measured mode shapes allow an individual pairing to analysis

results. Furthermore all the mode shapes of a test structure in a
given frequency band should be excited sufficiently to allow their
identification by experimental modal analysis procedures. In order
to meet these requirements pick-ups and exciters have to be
placed in an appropriate way on the test structure. Although
several systematic approaches for automatic selection of pickup
and exciter locations have been published earlier the standard
approach in practice is still based on the know-how and the skill
of the testing personal.

In this paper an automated approach and its application to a
prototype structure of a car  body component is presented which
is aimed at solving the following two problems:

1. Determination of an optimal set of structural degrees of
freedom (dof) as measurement points in order to maximize the
linear independence of the measured mode shapes (i.e. to
increase the spatial resolution of each mode shape with
respect to the other mode shapes).

 
2. Determination of force excitation patterns and their relative

magnitudes related to a given number of exciter locations at a
sub set of the chosen measurement points that allow an
excitation of all the mode shapes contained in a given
frequency band.

The approach presented here uses a QR-decomposition technique
to determine the most effective subsets of the modal matrix and
the force excitation matrix of an appropriate analytical model. An
application is presented for the case of a car body component
where the results are in contrast to empirical expectations.
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2 THEORY

2.1 Principles

The basic assumption shall be that a given analytical model
already describes the real structure in an appropriate manner, i.e.
the calculated mode shapes do not differ too significantly from the
ones to be measured.

In order to determine an optimal subset of structural degrees of
freedom that can be used as measurement points (i.e. pick-up
locations) the modal matrix is investigated. The idea is that ‘the
most linear independent’ rows of the modal matrix indicate
degrees of freedom that should be chosen as pick-up locations
because they form the smallest possible modal matrix which
provides a MAC (Modal Assurance Criteria) matrix with
minimized off diagonal terms (i.e. the ability to distinguish
between similar mode shapes is enhanced). The technique to
extract those rows is presented in the following chapters.

The same logic applies to the selection of degrees of freedom used
as excitation points. The only difference here is that the product
of the mass matrix with the modal matrix taken at the chosen
pick-up locations is investigated instead. This heuristic approach
is based on the fact that an excitation pattern proportional to the
product of the mass matrix with a given mode always excites this
very mode due to the orthogonality of the modal matrix with
respect to the mass matrix. If we now extract those rows again that
are ‘the most linear independent’ we very likely obtain exciter
locations that allow a (sub-optimal) excitation of all mode shapes
assembled in the modal matrix.

2.2 The QR-Decomposition

A suitable method to extract the columns of a matrix that are ‘the
most linear independent’ is the QR-decomposition [3] also used
in [1] to determine optimal pick-up locations.

Suppose the matrix A is given. Then the QR-decomposition is
given by

A E = Q R (1)
with

•  A ∈  Rm,n , a given matrix
•  Q ∈  Rm,m , an orthogonal matrix (QTQ = I)
•  R ∈  Rm,n , an upper triangular matrix with decreasing diagonal

elements
•  E ∈  Rn,n , a permutation matrix that exchanges columns of A

Due to the characteristics of the QR-decomposition the first
columns of (A E) are those that are the ‘most linear independent’

columns. In order to show this let 
~A A E=  . According to

equation (1) we can write:

~A Q R=  

The first column is represented by

~a Q r q1 1= =  R1 11

~a Q r q q qj j= = + + +  R  R  Rj 1j 2j jj1 2 � (2)

~a Q r q q qj j+ += = + + +1 1 2 1  R  R  Rj+1 1(j+1) 2(j+1) (j+1)(j+1)� (3)

where rj and qj denote the j-th columns of R respectively Q and
Rij denotes the element in the i-th row and the j-th column of R.
Due to the fact that the columns of Q form an orthogonal basis of

the space of the columns of 
~A , equations (2) and (3) show that

columns 1 to (j+1) are linear dependent only if R(j+1)(j+1) = 0. The
magnitude of the value of R(j+1)(j+1) can thus be considered as an
indicator for the linear independence of the first (j+1) columns of

the matrix 
~A .

Thus, considering the fact that the diagonal elements of R are
arranged in the descending order of their absolute values, the first

columns of 
~A  are those that show the strongest linear

independent characteristics.

It is evident that the described method always yields a maximum
of n diagonal values Rii. The selection of s > n columns however
can be performed in the following way:

1. Perform a QR-decomposition on A and select the first n
columns of A E (the column numbers with respect to A can be
extracted from E). After this set the selected columns to zero.

 
2. Perform a QR-decomposition on the modified matrix A2 and

select min [n, s-n] columns. After this again set the selected
columns to zero.

 
3. Repeat 2. until s columns are selected.

2.3 Optimal Pick-Up and Exciter Placement

As already assumed we have access to a mathematical model
which provides the following two matrices:

•  X = [x1,x2,...,xm] ∈  Rn,m , a modal matrix assembled from
m mode shapes with n components
(i.e. dof) each (n ≥ m)

•  M ∈  Rn,n , a mass matrix

In order to select s optimal pick-up locations the QR-
decomposition is applied to the transpose of the modal matrix X.
The transpose is taken because the information for one given
degree of freedom is provided in one single row of the modal
matrix and the QR-decomposition does only sort the columns and
not the rows of a matrix.

Now the question remains how to choose s. Since we have a (n,m)
modal matrix and n ≥ m the rank of the modal matrix is m, too.
Thus we have to restrict ourselves to the selection of s = m pick-
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up locations (If s > m is chosen the additional s - m pick-up
locations are to be found in the vicinity of the first m ones which
will not improve the measurement information.). After this the
MAC matrices of the modal matrix X versus itself and the modal

matrix reduced to the selected pick-up degrees of freedom 
~X

versus itself can be calculated according to (4).

[ ] ( )
MACij

i
T

j

i j

=
x x

x x

2

 
   ;  i, j = 1...m (4)

The comparison of the off diagonal terms of both MAC matrices
can be used to validate the selection result.

The optimal exciter locations can be obtained simply by applying
the QR-decomposition to the transpose of the exciter force matrix
F = (M X) ∈  Rn,m reduced to the chosen pick-up degrees of
freedom Fred ∈  Rm,m (This reduction has to be made in order to
arrive at exciter locations that coincide with the chosen pick-up
degrees of freedom - although the result may not be optimal.).
Here, the number s of degrees of freedom to be selected is
determined by the number of exciters ne that are to be used for the
test which is limited by the available test equipment.

Theoretically, in case of proportional damping, the exciter force
vector Fi = (M Xi) (i.e. the i-th column of F) excites only the i-th
mode shape Xi while the remaining mode shapes Xj (j ≠ i) are not
excited. This can be seen from the equation of motion transformed
to modal degrees of freedom qi (i = 1, 2, ..., n) which is decoupled
into n independent equations (5).

(- ω2 I + ωo
2 + j ω ∆) q = XT F = XT M X = I (5)

with

•  ωo
2 = diag (ωo1

2, ωo2
2,...,ωon

2) matrix of eigenvalues

•  ∆ =  
11 12

21 22

∆ ∆
∆ ∆

�

� �

















= diag in case of proportional damping
≠ diag in case of non-proportional damping

The assumption of proportional damping represents a good
approximation the more the better the damping values decrease
and the distance of neighbored eigenfrequencies increases.

After the selection of m pick-up and ne exciter locations the
validity of the approach may be checked by calculating the
multivariate mode indicator function from synthesized frequency

response functions [2, 4] solving the eigenproblem (6) for each
eigenfrequency of interest.

[-(HT
re Hre + HT

im Him) Λ1(ω0i) + HT
re Hre] α(ω0i) = 0 (6)

with

ω0i eigenfrequency (i = 1...m)
Λ1(ω0i) smallest eigenvalue = multivariate mode

indicator function value at ω = ω0i

H ∈  Rn,ne FRF matrix (re = real-, im = imaginary part)
α(ω0i) ∈  Rne,1 eigenvector = appropriate force vector

This multivariate mode indicator function Λ1(ω) shows explicitly
whether all desired mode shapes can be excited or not.
Furthermore the calculation of the multivariate mode indicator
function provides i = 1, 2, ..., m excitation force vectors. Each of
them allows the best possible excitation for the associated mode
shape with ne exciter locations.

3 APPLICATION: CAR BODY COMPONENT

3.1 Aluminum Car Body Component

The described methods for selecting optimal pick-up and exciter
locations were applied to a model of an aluminum car body
component (figure 1).

The Finite Element Model of the car body component consists of:

•  168 elements and
 
•  132 nodes.

The calculation of the mode shapes has been performed using a
symmetric model under free/free condition. The Finite Element
Analysis yielded 19 mode shapes (including three rigid body
modes) in a frequency range from zero up to 210 Hz.

3.2 Optimal Pick-Up Placement

As already discussed the modal matrix was to be investigated
here. The rows of the modal matrix related to rotational degrees of
freedom had to be neglected because rotational degrees of
freedom cannot be measured. Thus the modal matrix was reduced
to a (396,19) matrix. The QR-decomposition led to 19 pick-up
degrees of freedom presented in figure 2. The numbers in figure 2
indicate the ranking of the degrees of freedom coming from the
QR-decomposition.
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Figure 1: Survey of car body component.

Figure 2: 19 selected pick-up locations.
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The MAC matrices show a similar behavior for the full (figure 3)
and the reduced modal matrix (figure 4). This is a good indicator
for an appropriate choice of pick-up degrees of freedom.

However, the MAC matrix with respect to the reduced modal
matrix exhibits some larger off-diagonal terms than the one
related to the full modal matrix and this means that the linear
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independence of the reduced modes is worse than the one of the
modes using all degrees of freedom. Yet, since the off-diagonal
terms are still very small and not larger than about 0.3 this does
not introduce any problem.

Figure 3: MAC matrix - all degrees of freedom.

Figure 4: MAC matrix - 19 selected degrees of freedom.

3.3 Optimal Exciter Placement

Here the force matrix F = (M X) was investigated. Since only the
19 degrees of freedom chosen above were considered this matrix
was reduced to size (19,19). Furthermore it was defined that the
number of exciters used for the test should be as small as possible.

In order to determine the appropriate number of exciter locations
the number of exciters was increased step by step while the

exciter degrees of freedom where chosen with respect to their
ranking coming from the QR-decomposition of (Fred)

T. For each
exciter configuration the resulting multivariate mode indicator
function was inspected then.

It showed that for two exciters (#1 and # 2 in figure 7) 18 of the
19 modes could already be excited significantly - only mode 17
could not be excited at all (figure 5).

The multivariate mode indicator functions did not change
significantly after adding one or two additional exciters. However
adding a fifth exciter (# 3 in figure 7) finally allowed a perfect
excitation of the missing mode and it was therefore concluded,
that this exciter location was crucial for the excitation of this very
mode.

Because all the other modes could already be excited using two
exciters and mode 17 could be excited only after adding the fifth
exciter location, the third and the fourth exciter location have
been removed from the set again. The remaining three exciter
locations (see figure 7) now provided the desired minimum set of
exciter locations capable of exciting all the 19 modes in the given
frequency band (see figure 6, a zero in the multivariate mode
indicator function indicates a perfect excitation of the
corresponding mode).

A subsequent visual inspection of mode 17 displayed that it was a
local mode of one single plate section which could not be excited
using the first four exciter locations coming from the QR-
decomposition of (Fred)

T and the exciter added to primarily excite
mode 17 was found to be situated in the vicinity of the maximum
amplitude of mode 17 !

Figure 5: Multivariate mode indicator function - two exciters.
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Figure 6: Multivariate mode indicator function - three
exciters.
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It can be seen from figure 6 that all modes can be excited
sufficiently using the three selected exciter positions if the
appropriate multi-point excitation force pattern α is provided. The
three selected exciter positions therefore are very well chosen and
should be considered in a real test. Furthermore it should be noted
that the resulting exciter positions are quite surprising and would
not have been expected by simple inspection of the 19 modes.

Figure 7: Three selected exciter degrees of freedom.
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It should be noted that a single-point excitation applied at either
one of the three selected exciter position does not yield the same
good results. In the case that only single-point excitation can be
used due to restrictions of the test equipment the following
procedure is proposed:

1. Collect frequency response functions (FRFs) from exciting the
structure with one modal exciter at all three selected exciter
positions subsequently or use impulse hammer excitation with
ne = 3 reference pick-ups at these exciter positions.

2. Superimpose the three collected FRFs using the force factors
αj

(k) from the multivariate mode indicator function calculation
according to (7).

~
( ) ( )( ) ( )H i

k
j
k

ij
j

ω α ω= ∑  H  (7)

i = 1, 2, ..., m = 19 → number of response dofs
 j = 1, 2, ..., ne = 3 → number of exciter dofs
 k = 1, 2, ..., m = 19 → number of mode shapes
 



~
( )( )H i

k ω → multi-point excitation FRF for the k-th mode

shape
Hij(ω) → measured FRF at response dof i and single-

point excitation dof j

3. Extract the k mode shapes by standard curve fitting procedures

from the corresponding k FRFs 
~H (w)i

(k) .

(Note: The procedure depicted above is only valid for linear
structures and should not be applied to structures which exhibit
significant non-linear behavior.)

4 CONCLUSIONS

The preceding chapters showed one possible approach for pick-up
and exciter placement that may be used to optimize the test set-up.
Because it takes analytic data into account it pays respect to the
dynamic behavior of a given structure which is an advantage to
pure intuition or know-how of testing personal. Nevertheless there
are inherent problems that should not be forgotten:

•  The results can only be as good as the initial analytic model
allows.

•  The selected pick-up and/or exciter positions may not be
accessible and thus compromises may have to be considered.

•  Due to the QR-decomposition the selected pick-up locations
may not provide enough information to visualize the mode
shapes in a sufficient way (therefore more, e.g. evenly
distributed pick-ups, should be used for the test which may be
neglected afterwards since these additional pick-ups may
increase the linear dependency of the mode shapes again).

In the presented case however the results are very encouraging:
with only 19 pick-up and three exciter locations every mode in the
given frequency band may be excited accurately and the linear
independence of the modes is excellent. Even if the third exciter
was missing still 18 of the 19 mode shapes could be excited.

The presented approach therefore seems to provide reliable results
and should be considered as a basis for setting-up a test.
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