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Abstract. In this paper the methods and results of
estimating the physical and modal parameters of a liquid
propellant tank from base excitation on a six axes shaking
table are presented. The measurement of interface forces
allows not only the identification of two sets of modal
data: one for the fixed/free and the other for the free/free
system, but also the identification of all rigid body
properties. The high consistency of the two identified
parameter sets and the good correlation with analysis
results show the benefits of the additional measurement of
interface forces.
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1. Introduction

This paper presents the methods and an
application of the physical and modal parameter
identification techniques introduced in [7], [8],
[9] and [10], where forces measured between
the interface of the test specimen and the
shaking table are used in addition to acceleration
response data obtained from a vibration test on a
six axes shaking table. If the interface forces are
not measured only the natural frequencies,
modal damping values and mode shapes of the
fixed/free system can be identified using
standard experimental modal analysis (EMA)
techniques. However, if the interface forces are
measured in addition, the following possibilities
for physical and modal parameter identification
arise:

•  Modal masses, effective masses and mass
participation factors of the fixed/free system

in addition to the conventional modal data
(natural frequencies, mode shapes and modal
damping values).

•  Rigid body properties (overall mass, center of
gravity location and mass moments of
inertia).

•  Modal data of the free/free system either
from frequency response functions (FRF)
estimated with respect to unit interface forces
or from an experimental Craig/Bampton
(C/B) model of the free/free system
assembled from the identified fixed/free
modal data and the identified rigid body
properties.

In order to take full advantage of these
identification possibilities, test data from six
axes shaking table testing is needed. In this
paper six axes shaking table test data acquired
by the Deutsche Forschungsanstalt für Luft- und
Raumfahrt (DLR) in Göttingen, Germany is
evaluated. The tested system was a liquid
propellant tank (LPT) plus support structure
mounted on a force measurement device (FMD),
both provided by ESA/ESTEC, Noordwijk, The
Netherlands (see figure 1).
It will be shown that the identification results
correlate very well with Finite Element Analysis
results. Furthermore the identification results,
especially the results for the free/free modal data
coming from two independent identification
procedures, are very consistent and thus enhance
the confidence in the accuracy of the identified
quantities.
It is concluded that the additional measurement
of interface forces during shaking table testing
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may significantly enhance the identification
possibilities and underlines the importance of
the used methods for modal testing and
analytical model verification.

2. Theoretic Background

If the system to be investigated is mounted in a
statically determinate way on a six axes shaking
table and if the interface accelerations and
forces are measured in addition to acceleration
responses of the system, FRFs of the free/free
and the fixed/free system may be identified.
Based upon these FRFs physical and modal
parameters can be identified subsequently [8].
The FRFs are identified using the well known
equations for multiple input / multiple output
systems (1) by post multiplying with the inverse
auto spectral matrix Gff

-1(jω).

G H Gaf ffj j j( ) ( ) ( )ω ω ω=  (1)

Gaf(jω) cross spectral matrix of output (a) and
input (f) signals

H(jω) FRF matrix
Gff(jω) auto spectral matrix of input (f) signals

In the case of ne input signals the auto spectral
matrix may be inverted if nv ≥ ne frames of test
data are used to calculate averaged spectral
matrices according to equations (2).
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In order to meet the requirements for the
inversion of Gff(jω) either stochastic or
deterministic input can be used. In the first case
the input signals must be uncorrelated, in the
second ne linear independent excitation patterns
must be provided.
Using base excitation on a six axes shaking
table as outlined above, FRFs of the free/free
system may be identified if the interface forces
(three forces and three moments: ne = 6) are
used as inputs (i. e. the FRFs are responses
normalized to unit interface forces). If the
interface accelerations (three translational and
three rotational accelerations: ne = 6) are
interpreted as inputs and inserted into equations

(1) and (2) it can be shown that the resulting
FRFs provide the information to identify the
modal parameters of the fixed/free system
except for the modal masses (in this case the
FRFs represent responses normalized to unit
interface accelerations, not to unit forces, [8]).
The corresponding averaged auto spectral
matrices can be inverted, for instance, if the
shaking table is driven in each of its six axes
separately in order to assemble nv ≥ 6 frames of
test data.
The complete set of modal parameters of the
free/free system can now be identified either
directly from the free/free FRFs by standard
EMA techniques (see e. g. [4], [5]) or from an
experimental C/B model [2] of the free/free
system assembled from identified modal data of
the fixed/free system and an estimate of the rigid
body properties [1].
The modal parameters of the fixed/free system
except for the modal masses can also be
identified by standard EMA techniques. The
missing modal masses plus effective masses and
mass participation factors can be extracted as
well using a special EMA procedure presented
in [7]. This procedure identifies the modal
system matrices in modal space utilizing already
identified natural frequencies and mode shapes
of the fixed/free system in addition to measured
interface forces.
The physical rigid body mass matrix can be
identified using a two-step procedure first
introduced by the authors in [9]. In a first step
the underlying rigid body response is extracted
from the real parts of the free/free FRFs which
hold this information. Since the real part of a
FRF is an even function the following bi-
quadratic approach can be used in the frequency
range below the first elastic natural frequency
for each measured degree of freedom (dof)
k = 1, ..., nm:
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Assembling data at i = 1,..., n ≥ 3 spectral lines
ωi  yields:
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Equation (4) can now be solved in a least
squares sense for [C0k C2k C4k]

T and the
constant term C0k then represents an estimate of
the rigid body response at dof k. The estimates
for all measured dof are finally assembled in the
vector aM,T = [C01,..., C0nm].
In a second step an iterative estimation
technique based upon the linearized equations of
motion of an unrestrained rigid body (5) is used
in order to identify all 10 rigid body parameters
contained in the matrix MR

A.
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m overall mass
ξS, ηS, ζS center of gravity (cog) location
ΘA

ξξ, ... mass moments of inertia w.r.t. point A
uA, αA, ... translations/rotations w.r.t. point A
fξ

A, tξ
A, ... forces/moments w.r.t. point A

Theoretically equation (5) could directly be used
to identify the rigid body properties. Yet to
reduce the number of unknowns an estimation
vector σ according to equation (6) can be
defined.
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Reassembling equation (5) yields equation (7)
which can be solved for the 10 rigid body
properties contained in σ in a least squares
sense. Since equation (7) only supplies six
equations for 10 unknowns test data of at least
two tests with different excitation patterns must
be processed simultaneously (additional data is
added by appending lines to the measurement
matrix B and the force vector fA).
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It is in general impossible to measure the rigid
body responses aA and the corresponding forces
fA directly at an arbitrary reference point A.
Thus aA is estimated from the relation
aM = XR aA, where aM represents the rigid body
responses extracted from equation (4), via the
least squares solution:

( )a X W X X W aA
R
T

R R
T M=

−
    

1
(8-a)

XR matrix of rigid body modes at measured dof
W optional weighting matrix

For a single point P, for example, XR takes the
form shown in equation (9) if all translational
accelerations are measured.
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ξP, ηP, ζP coordinates of point P w.r.t. point A

At last, the forces at the reference point A fA

follow from the transformation:

( )f X fA
R
FMD=

T FMD (8-b)

XR
FMD matrix of rigid body modes, w.r.t. FMD coordinates

f FMD vector of measured FMD forces

A more detailed discussion of the technique is
given in references [9] and [10].

3. The Tested System

The tested system is a liquid propellant tank
(LPT, diameter 700 mm, height 1323 mm, mass
47.7 kg) with support structure (height 1900
mm, width/length 804 mm, mass 567 kg)
mounted on a special force measurement device
(FMD, assembly of two steel rings connected by
eight piezoelectric force transducers, mean
diameter 1194 mm, mass 280 kg, [12]) provided
by ESA/ESTEC, Noordwijk, The Netherlands.
The test data evaluated was acquired by the
Deutsche Forschungsanstalt für Luft- und
Raumfahrt (DLR) in Göttingen, Germany,
during six tests. For each test the complete
system LPT/FMD was base excited in another
direction with the six axes shaking table system
MAVIS 2 [3].
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Figure 1: LPT/FMD on MAVIS 2 (DLR Göttingen)

4. Finite Element Analysis

In order to produce analytical data for
correlation and test data evaluation purposes a
Finite Element (FE) analysis was performed.
Two models, one for the LPT and one for the
FMD were provided by ESA/ESTEC. Since the
upper half of the FMD (the part above of the
force transducers) becomes part of the tested
system the two FE models were merged (figure
2) in order to yield analysis results comparable
to the identification results.
The rigid body properties for this model are:

Property Value

cog w.r.t. origin [0,00 0,00 0,51]T m

overall mass 920,40 kg

Principal moment of inertia (moi) 1 264,80 kgm²

Principal moment of inertia (moi) 2 513,00 kgm²

Principal moment of inertia (moi) 3 514,50 kgm²

Table 1: Analytical rigid body properties w.r.t. cog

Figure 2: Merged FE model of LPT/FMD

An analytical modal analysis in the frequency
range from zero to 150 Hz yielded:

# Frequency [Hz] Mode Description

1 71.60 1. bending (X)

2 75.56 1. bending (Y)

3 86.73 1. torsion

4 93.29 crossbars (sym.)

5 98.96 crossbars (anti.)

6 120.56 2. torsion

7 135.91 2. bending (X)

8 141.54 tank vertical

Table 2: FE analysis results - fixed/free system

# Frequency [Hz] Mode Description

1-6 0.00 rigid body motion

7 93.29 crossbars (sym.)

8 96.18 crossbars (anti.)

9 101.49 1. torsion

10 128.94 2. torsion

11 141.53 1. bending (X)

12 146.78 tank vertical

Table 3: FE analysis results - free/free system

R
R

R
R

R

R

R

R

R

R

R

R

R

ZY
X

upper ring

of FMD

LPT

FMD

MAVIS 2Force
Transducer



-5-

5. The Test

The test data were acquired during six sweep
sine tests covering a frequency range from 10 to
120 Hz. For each test the complete system
LPT/FMD was base excited in another direction
(three translational and three rotational table
movements, [11]). The fourier transforms of the
measured forces and accelerations were
calculated at DLR. For each of the six test runs
the following data were acquired:

•  six interface forces/moments
•  six interface accelerations
•  78 acceleration responses (see figure 3)

leading to six independent sets of data to be
used for physical and modal identification.

Figure 3: Measured acceleration responses

6. Identification Results

a) FRF

At first, FRFs of the free/free and the fixed/free
system were identified. Typical sets of FRFs for
selected dof (upper part of the support frame
and crossbars) are shown in figure 4 and figure
5.

Figure 4: Selected FRFs of the free/free system

Figure 5: Selected FRFs of the fixed/free system

a) Free/Free System From EMA

The modal identification of the free/free system
from free/free FRFs was performed using a
standard EMA technique [6]. The results are
listed in table 4. The correlation shows that all
three modes found in the analysis could also be
identified. Even the modal masses agree well
except for the first mode. Here the identified
value seems to be to high. Since the first two
modes are both local modes of the crossbars one
would expect that the values of the modal
masses are nearly the same for these modes. The
modal damping values indicate that the system
is extremely lightly damped. This increases the
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uncertainty of the identified modal mass values,
because only a limited amount of significant
spectral information (around the response peaks)
can be used for EMA.

Frequency
[Hz]

MAC
[%]

Modal Mass
[kg]

Damping
[%]

Test FEA Test FEA

98.78 93.29
(-5.56)

99.5 56.31 18.26
(-67.57)

0.25

100.52 96.18
(-4.32)

98.6 16.46 18.53
(12.58)

0.08

115.77 101.49
(-12.33)

90.0 107.94 78.11
(-27.64)

0.39

Table 4: Identification results, free/free system
(values in brackets: relative deviation in percent)

An example of the identified mode shapes can
be found in figure 6.

Figure 6: Free/free system - 115.77 Hz

b) Identification Of Rigid Body Properties

The rigid body properties were identified using
the two-step procedure outlined above.
It can be seen that the overall mass and the
center of gravity location (cog) differ less than
10 percent from the analytical results. The
principal moments of inertia (moi), however,
differ more. In order to better evaluate the
quality of the identified values a comparison
with values determined by different
identification techniques (weighing, pendulum
testing) would be helpful. Yet these values were
not available.

Parameter Test FEA

overall mass [kg] 836.00 920.40   (10.10)

cog, x [m] 0.01 0.00   (-)

cog, y [m] 0.01 0.00   (-)

cog, z [m] 0.47 0.51   (8.51)

moi 1 [kgm²] 228.73 264.80   (15.77)

moi 2 [kgm²] 365.95 513.00   (40.18)

moi 3 [kgm²] 394.54 514.50   (30.41)

Table 5: Identified rigid body properties w.r.t. cog
(values in brackets: relative deviation in percent)

c) Fixed/Free System From EMA

A standard EMA technique [6] was used in
order to identify natural frequencies, mode
shapes and modal damping degrees of the
fixed/free system from fixed/free FRFs. The
modal masses, effective masses and mass
participation factors were extracted using the
special EMA technique [7]. The results are
shown in table 6.

Frequency
[Hz]

MAC
[%]

Modal Mass
[kg]

Damping
[%]

Test FEA Test FEA

54,13 71,60
(32,27)

87,9 158,18 222,57
(40,71)

0,51

58,88 75,56
(28,34)

88,2 117,81 270,36
(129,49)

0,33

75,60 - - 1) - - 0,45

94,17 86,73
(-7,91)

92,8 168,52 135,75
(-19,45)

0,27

98,86 93,29
(-5,63)

99,5 22,89 18,02
(-21,28)

0,29

102,52 98,96
(-3,47)

92,0 19,73 23,13
(-17,23)

0,38

115,26 135,91
(17,92)

58,8 2) - - -

116,28 - - 1) - - -

118,92 141,54
(19,02)

84,2 - - -

1) no pairing possible / 2) pairing by visual inspection but MAC < 80 %

Table 6:  Identification results, fixed/free system
(values in brackets: relative deviation in percent)

The correlation shows that only the sixth
analytical mode shape could not be identified.
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This mode probably lies outside the frequency
range covered by the test. Moreover two
additional modes were identified that could not
be found in the analysis.
For the third mode no modal mass, for the
seventh, eight and ninth mode neither modal
mass nor modal damping could be identified.
The modal masses of the fourth, fifth and sixth
mode correlate well with the analytical results.
For the first two modes, however, the deviations
are larger. The large deviations between
identified and calculated natural frequencies and
modal masses may be traced back to modeling
uncertainties of the connections between the
LPT and the FMD as well as between the FMD
and the shaking table. Again the modal damping
values indicate that the system is very lightly
damped increasing the uncertainty of the
identified modal mass values.
Table 7 lists the results for the effective masses.

# X-trans. [kg] Y-trans. [kg] Z-trans. [kg]

Test FEA Test FEA Test FEA

1 318,62 390,01
(22,41)

32,75 0,00 0,38 0,00

2 30,70 0,00 337,89 349,01
(3,29)

0,13 0,02

31) - - - - - -

4 0,42 0,24 0,06 0,00 0,59 0,00

5 0,00 0,00 0,07 0,00 0,78 0,01

6 0,02 0,00 3,36 13,63 0,00 0,01

# X-rot. [kg] Y-rot. [kg] Z-rot. [kg]

Test FEA Test FEA Test FEA

1 49.77 0.00 480.20 639.45
(33,16)

0.01 0.09

2 593.91 596.13
(0,37)

45.45 0.00 0.00 0.01

31) - - - - - -

4 0.07 0.00 0.00 1.29 89.08 83.65
(-6,10)

5 0.06 0.00 0.00 0.00 0.27 0.00

6 9.58 58.86 0.06 0.00 0.05 0.01
1) no pairing possible

Table 7: Effective masses
(values in brackets: relative deviation in percent)

The large values of the effective masses of the
first, second and fourth mode correlate well with
the analysis results. However, the values for the
fifth and sixth mode correlate less. This may be
explained by the fact that these modes are local
modes of the crossbars with small effective
mass values.
As an example for the identified mode shapes
the first bending mode is shown in figure 7.

Figure 7: Fixed/free system - 54.13 Hz

d) Free/Free System From C/B Model

The modal parameters of the free/free system
were alternatively identified using an
experimental C/B model of the free/free system.
Proceeding this way yielded the same three
modes as the EMA plus two computational
modes which could be separated easily because
of their appearance and natural frequency. The
results are listed in table 8.

Frequency
[Hz]

MAC
[%]

Modal Mass
[kg]

Damping [%]

EMA C/B EMA C/B EMA C/B

98,78 98,88
(0,10)

99,0 56,31 21,10
(-62,53)

0,25 0,29
(16,00)

100,52 101,35
(0,83)

95,6 16,46 17,67
(7,35)

0,08 0,38
(-)

115,77 120,08
(3,72)

94,9 107,94 170,39
(57,86)

0,39 0,35
(-10,26)

Table 8: Free/free system from C/B model
(values in brackets: relative deviation in percent)
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The results of the EMA and the ones from the
Craig/Bampton model agree very well, thus
increasing the confidence in the identified
parameters. Merely the modal masses of the first
and the third mode as well as the modal
damping degrees of the second mode do not
correlate in a satisfying manner. These
parameters should therefore be considered with
lower confidence than the others.

7. Conclusions

In this paper it was shown that the additional
measurement of interface forces during base
excitation testing significantly enhances the
identification possibilities, since the complete
set of modal data of the fixed/free and the
free/free system can be identified as well as the
rigid body properties. These additional data can
be used e. g. for model updating purposes in
order to achieve a more unique solution for the
uncertain system parameters.
Since the investigated LPT/FMD system is a
‘real life’ application and not a simple
laboratory test case the practical importance of
the methods is underlined. Moreover, the
consistency of the identified data, especially the
consistency of the free/free modal data coming
from two independent identification procedures,
enhances the confidence in the accuracy of the
identified quantities.
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