
Proceedings of the ASME Conference On Noise & Vibration, Boston, ISBN 0-7918-1718-0 (1995)

ABSTRACT
Base excitation testing is used in industry in order to qualify

mechanical systems with respect to specified base acceleration
levels. This type of excitation only allows to identify
eigenfrequencies, mode shapes and modal damping values of the
fixed/free system. Modal masses, mass participation factors and
effective masses of the fixed/free system as well as the modal data
of the free/free system cannot be identified because the excitation
forces are unknown.

This paper introduces an approach to identify these modal data
as well. For this purpose the reaction forces at the table/structure
interface have to be measured also. Furthermore, the verification
of the theory using a laboratory test structure will be presented.

NOMENCLATURE
CFRP Carbon Fiber Reinforced Plastics
dof degree of freedom
FE, FEA Finite Element ..., Finite Element Analysis
FMD Force Measurement Device
FRF Frequency Response Function
MAC Modal Assurance Criteria
TSP Truss Supported Platform (test structure)

b ‘base’ or ‘’interface’
dyn ‘dynamic’
eff ‘effective’
G auto/cross spectra matrix
H FRF matrix
M, D, K mass, damping, stiffness matrices
rel ‘relative’
s ‘slave’ or ‘structural’
u, f / U, F displacement, force vectors/matrices
ω circular eigenfrequency
Y modal matrix

INTRODUCTION
Base excitation testing on a shaking table is frequently used in

industry to qualify mechanical systems with respect to specified
base acceleration levels. The tests are run separately for the axial
and the lateral directions.

The excitation of one single axis will generally not allow to
excite all the modes in the test frequency range. It would therefore
be desirable to excite as many of the maximal 6 directions (3
translational, 3 rotational) as possible and to extract the fixed/free
system's modal data from frequency response functions (FRFs)
related to unit base accelerations. Yet even then it would not be
possible to identify the modal masses, mass participation factors
and effective masses of the fixed/free system because the base
excitation forces are unknown. With additionally measured
interface forces it would however be possible to estimate these
data as well as FRFs with respect to unit reaction forces (3
translational, 3 rotational) which allow to estimate the modal data
of the free/free system also.

In this paper a procedure to extract all modal data of the
fixed/free system as well as of the free/free system will be
presented which is based on the additional measurement of base
reaction forces.

The whole procedure consists of the following steps:
1. Excitation of the system at its base in 6 independent directions

by uncontrolled impacts,
2. measurement of the reaction forces with a commercially

available force measurement device (FMD) in addition to
measurement of structural response and base (interface)
accelerations,

3. estimation of the FRFs with respect to the 6 unit base reaction
forces (3 translational, 3 rotational),

4. extraction of free/free structure's modal parameters,
5. estimation of the FRFs with respect to the 6 unit base

accelerations (3 translational, 3 rotational),
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6. extraction of fixed/free structure’s modal parameters including
effective masses.

This procedure was verified using a laboratory test structure
representative for the structure of an aerospace component.
Correlation with analytical predictions will also be presented in
the paper.

BASIC EQUATIONS FOR FRF ESTIMATION
A discrete, linear, time invariant mechanical system with n

degrees of freedom (dof) can be described by equation (1). Note
that (1) in general describes a free system with no dofs restrained.

M u D u K u f ( ) +  ( ) +  (t) = ( )&& &t t t (1)

with M, D, K constant mass, damping and stiffness
matrices, (n,n)

u(t), f(t) displacement and force vectors (functions
of time), (n,1)

The equation of motion (1) described in the frequency domain
is given by

K u fdyn (j ) (j ) = (j )ω ω ω (2)

where the (n,n) dynamic stiffness matrix of the system is
defined by

K M D Kdyn 2 (j ) = (- + j  +  )ω ω ω (3)

The inversion of this equation yields the frequency response

[ ]
u H f

H K

(j ) = (j ) (j )

with   (j ) =  frequency response function (FRF) matrixdyn  -1

ω ω ω

ω ω( ) ,j
(4)

Equations (2) and (4) are the basis for deriving the estimation
techniques described below which are themselves obtained from
common FRF estimation methods presented for instance in the
books of Ewins (1986) and Natke (1992).

Estimation of FRFs of the Free/Free System.
Separation of Interface dof.
In order to estimate FRFs of the free/free system we now focus

on (4) and consider the free/free system to be restrained at nb

given base interface dof (see figure 1 below).

Figure 1: Mechanical System, left: not restrained,
right: restraint at dof ub1 to ub3 (mounted on FMD)
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Equation (4) can then be partitioned as follows
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with ub(jω), fb(jω) base dof related quantities, (nb,1)
us(jω), fs(jω) slave dof related quantities, (n-nb,1)

Special Case: Base Excitation.
For the special case of base excitation the forces at the slave

dofs are equal to zero and only the nb interface forces fb(jω) are
non zero. Thus (5) reduces to
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The FRFs in (6) contain nb-columns of the free/free system’s
FRF matrix. Each of these columns can be used redundantly for
identification of the free/free systems modal parameters.

Now, it can easily be seen that an estimation of FRFs directly
from (6) can only be done for one-dimensional structures since in
that case only one (nb = 1) interface force exists. This represents
the classical single point excitation case where all classical FRF
estimation techniques may be applied. For two- and three-
dimensional cases however, the force vector contains nb = 3
respectively nb = 6 non-zero components which does not allow to
resolve the FRF matrix from (6) unless the number of excitation
directions is increased to nb.

Estimation of Frequency Response Functions.
For nb > 1 fb(jω) cannot be inverted because of fb(jω) being a

(nb,1) vector. If we restrict ourselves to systems that are restrained
in a statically determined way three possible cases may arise:

nb = 1: 1-dimensional (1D) case, e.g. single point excitation of a
structure with only one non zero interface force.

nb = 3: 2-dimensional (2D) case, e.g. excitation of a symmetric
test structure in one plane, such that only three interface forces are
non zero. (If the structure in figure 1 is symmetric to the x-z-plane
only three interface forces fb1, fb2 and fb3 will arise.)

nb = 6: 3-dimensional (3D) case, excitation with all interface
forces not equal to zero.

Providing nb linear independent interface force vectors resulting
from nb independent base excitation directions equation (6) can be
extended to
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with

[ ]U u u ub b
1

b
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b
n(j ) = (j ) (j ) ... (j )bω ω ω ω matrix of base

displacements, (nb,nb)
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[ ]U u u us s
1

s
2

s
n(j ) = (j ) (j ) ... (j )bω ω ω ω matrix of slave

displacements, (n-nb,nb)

[ ]F f f fb b
1

b
2

b
n(j ) = (j ) (j ) ... (j )bω ω ω ω matrix of interface

forces, (nb,nb)

i.e. the six linear independent vectors are arranged as columns
of a matrix. The interface force matrix is now a non singular
(nb,nb) matrix (if the excitation directions are independent) and
can thus be inverted.

Because of noise on real test data the FRF submatrix will not be
calculated by inversion of the interface force matrix. It is better to
use the H1 method which reduces the error on the estimated FRF
submatrix in a least square sense. Here the auto- and cross spectra
are built with the conjugate complex transpose interface force
matrix (superscript *) and averaged over k = 1 ... r frames of
measurement data (frame = data from one single excitation):
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With the averaged auto- and cross spectra matrices (9)
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equation (8) yields
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Now the averaged auto spectra matrix can be inverted and the
desired estimation result for the FRF submatrix of the free system
is
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Estimation of FRFs of the Fixed/Free System
Separation of Interface dof.
In order to estimate the FRFs of the fixed/free system with

respect to unit interface displacements (or accelerations) we
partition (2) in analogy to (5) which yields
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with ub(jω), fb(jω) interface dof related quantities, (nb,1)
us(jω), fs(jω) slave dof related quantities, (n-nb,1)

Special Case: Base Excitation.
As already mentioned, for base excitation the forces at slave dof

are equal to zero. We now develop the second row of (12) and
arrive at

K u K u 0sb
dyn

b ss
dyn

s(j ) (j ) (j ) (j ) ω ω ω ω+ = (13)

If we restrict ourselves again to systems that are restrained in a
statically determined way we can split the slave dof displacements
into two parts - one rigid body part and one relative displacement
part:

u Y u us b s
rel(j ) (j ) (j )ω ω ω= +R , (14)

with [ ]ub b,x b,y b,z b,xx b,yy b,zz

 T
(j ) = u (j ) u (j ) u (j ) u (j ) u (j ) u (j )ω ω ω ω ω ω ω

containing the base displacements and rotations.
I.e. the overall displacement can be described as a combination

of a rigid body motion of the system and a dynamic relative
motion added to the rigid body motion. The rigid body modes YR

merely represent a geometrical transformation that transforms the
interface displacements on the slave dof. Using (14) and (13) plus
neglecting mass and damping coupling terms (13) yields the
equation of motion of the fixed/free system

K u fss
dyn

s
rel

eff(j ) (j ) (j )ω ω ω= (15)

where the effective excitation force feff(jω) is given by

f M Y ueff b(j )  (j )ω ω ω= 2
ss R (16)

The frequency response is described by

u H us
rel

sb bj j( )
~

( )ω ω=  (17)

with [ ]~
H K M Ysb ss=

−
ω ω2

ss
dyn

R (j )   
1

(18)

~
Hsb  represents a modified (ns,nb) FRF matrix which allows to

identify the modal parameters of the fixed/free system.
Equation (17) is the analogy to equation (6) in the previous

chapter and builds the basis for estimating parts of the FRF matrix
~
Hsb  from measured us

rel(jω) and ub(jω).

Estimation of Frequency Response Functions.
In the general case of uncontrolled base motion ub(jω) cannot

be inverted because of ub(jω) being a (nb,1) vector with nb > 1.
This can only be done for the special case of uniaxial base
excitation, with, for example:

[ ]ub b,x b,y b, z b,xx b,yy b,zz

 T
(j ) = u (j ) 0,  u (j ) = u (j ) = u (j ) = u (j ) = u (j ) = 0ω ω ω ω ω ω ω≠

Here, the desired FRFs can be obtained directly from the
measured response by classical estimation techniques based on
single point excitation.
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If we restrict ourselves to systems that are restrained in a
statically determined way it follows that nb = 6 in 3D, nb = 3 in 2D
and nb = 1 in 1D.

Providing nb linear independent base displacement vectors
equation (17) can be extended to

U H Us
rel

sb bj j( )
~

( )ω ω=  (19)

with
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1

b
2

b
n(j ) = (j ) (j ) ... (j )bω ω ω ω matrix of base

displacements, (nb,nb)

[ ]U u u us
rel (j ) = (j ) (j ) ... (j )s

rel 1
s
rel 2

s
rel nbω ω ω ω matrix of relative slave

displacements, (n-nb,nb)

i.e. the nb linear independent vectors are arranged as columns of
a matrix. The interface displacement matrix is now a non singular
(nb,nb) matrix and can thus be inverted.

Again the H1 method which reduces the error on the estimated
FRF submatrix in a least square sense is used. The auto- and cross
spectra are built with the conjugate complex transpose interface
displacement matrix (superscript *) and averaged over k = 1 ... r
frames of measurement data:
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With the averaged auto- and cross spectra matrices (21)
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(20) becomes

G H G
U U U Urel

b b b
=  sb

~
(22)

Now the averaged auto spectra matrix can be inverted. The
desired estimation result for the FRF submatrix that can be used
to identify the eigenfrequencies and mode shapes (but not the
modal masses) of the fixed/free system is obtained from

~
H G Gsb U U U Urel

b b b
=  -1 (23)

The measured interface forces F(jω) are related to the measured
base excitation matrix Ub(jω) by

F(jω) = HF
FUb

 Ub(jω) (24)

where HF
FUb represents the (nb,nb) force FRF matrix related to

unit base displacements.

Replacing the measured displacements Us
rel in equations (20)

and (21) by the measured interface forces F(jω) allows the
estimation of the forces due to unit base excitation

H G GFU
F

FU U Ub b b b
=  -1 (25)

IDENTIFICATION OF MODAL PARAMETERS
With equations (11), (23) and (25) we finally assembled the

information allowing an identification of the free/free system’s
modal parameters as well as the fixed/free system’s modal
parameters.

The modal parameters of the free/free system can be obtained
from the FRFs estimated via (11) with standard modal extraction
procedures. From the FRFs estimated via (23), however, only
eigenfrequencies, mode shapes and modal damping values of the
fixed/free system can be extracted. With the help of (25), though,
the modal masses, mass participation factors and effective masses
can be identified also using a special procedure presented by Link
and Qian (1994) that will not be further discussed here.

VERIFICATION OF THE METHOD
The method was verified using a laboratory model of a space

craft component called TSP (Truss Supported Platform) that has
been designed and manufactured especially for modal
identification and analytical model updating purposes. The main
goal has been to place the most significant modes and
eigenfrequencies in a frequency range from 20 to 200 Hz.

The TSP can be devided into two main parts. The platform and
the support truss. The platform consists of a 800 by 1200 mm
sandwich plate with aluminum honeycomb core (thickness 7.2
mm) and Carbon Fiber Reinforced Plastics (CFRP) face sheets
(thickness 0.9 mm). The CFRP plate is mounted on the support
truss as shown in figure 2. The struts of the truss are made of
aluminum tubes with a diameter 15 mm and a wall thickness of 1
mm.

Figure 2: Survey of the TSP structure

Aluminum Plate

CFRP Sandwich
Plate

Aluminum Tube

Finite Element Analysis
The Finite Element Analysis to produce the data for

test/analysis correlation has been performed with the program
system IDEAS. The FE model for the free/free structure consisted
of 436 nodes, 392 elements and 2616 dof, the one for the
fixed/free structure of 385 nodes, 336 elements and 2246 dof. The
analysis yielded eigenfrequencies and mode shapes from zero to
220 Hz. The eigenfrequencies for the free/free and the fixed/free
model are presented in table 1 and table 2.
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Base Excitation Test
As described above the test set-up had to provide nb linear

independent interface force vectors as well as nb linear
independent base acceleration vectors. Because of the TSP
structure not being symmetric the number of possible interface
forces is six (3D case) if the structure is mounted in a statically
determined manner. Thus the number of linear independent
vectors to be provided by the test had to be six also. Normally this
can only be accomplished by 6-axis shaking tables, for example, if
each axis is excited separately (3 translational axes + 3 rotational
axes). Lacking a 6-axis shaking table a different approach had to
be applied. The idea was to mount the structure on a elastically
supported seismic block and excite this seismic block by hammer
impacts at six different locations in order to produce six linear
independent vectors.

In order to measure the interface forces a force measurement
device (FMD) had been used as an interface between the seismic
block and the TSP. The measured forces where related to a known
point on the FMD. Thus the TSP structure could be regarded as
being mounted in a statically determined way at this very point.

The excitation forces had been applied to the seismic block
with a heavy rubber hammer and the frequency range to be
examined was specified from zero to 200 Hz. The rubber hammer
autospectrum showed that this frequency range could be excited
sufficiently.

For each of the six defined excitation locations the Fourier
transforms of six base accelerations, six interface forces and 65
structural responses (all measurement dof were located on the
CFRP plate) have been calculated (15 times for averaging).

Identification of Modal Data
Free/Free Structure.
The first step after acquisition of the test data in form of Fourier

transforms was to estimate those six columns of the free/free
structure’s FRF matrix which are related to the interface forces.
This has been done using in-house software that is based on the
theory presented above. In figure 3 all 65 estimated FRFs
(imaginary parts) with respect to unit interface force in z-direction
are shown (third column of the FRF matrix (11)).

Figure 3: Free/free FRFs with respect to unit z-force
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The six columns of the FRF matrix served as six independent
references that were used for the following modal identification
process. Thus theoretically all eigenfrequencies and mode shapes
could be identified six times - once for each reference.

Of the overall nine elastic mode shapes of the free/free structure
found by the FE analysis in the observed frequency band, only
eight have been identified. The mode shapes forming the final
result were identified from those references with the highest
signal to noise ratio. For example, to identify the mode at
112.61 Hz the unit interface force in y-direction was used since
this mode was not excited by the unit z-force according to figure
3. Table 1 shows the eigenfrequencies, modal damping ratios and
modal masses that are related to the eight chosen mode shapes. In
addition the analytic eigenfrequencies and the MAC values are
shown also (MAC values are a means for comparison of two
mode shapes. MAC = 0 → modes are orthogonal, MAC = 1 →
modes are collinear).

Table 1: Modal data of free/free TSP structure

# Freq.
(FEA)
[Hz]

Freq.
(Test)
[Hz]

MAC
value

[-]

Modal
Mass
[kg]

Modal
Damping

[%]
1 38.82 38.31 0.94 2.12 0.67
2 61.29 60.50 0.93 0.58 1.02
3 77.51 65.00 0.75 0.58 1.33
4 83.76 83.25 0.92 2.04 1.96
5 85.40 - - - -
6 110.36 112.61 0.98 1.68 1.15
7 161.85 120.95 0.73 0.64 1.05
8 171.03 162.37 0.94 0.50 1.21
9 188.53 181.50 0.99 - 0.96

The underlined modal masses showed the smallest variations
during the identification process and are therefore more reliable
than the others.

The identified mode shapes were almost free from noise effects
and the results show that the estimation of FRFs with respect to
measured interface forces of the fixed/free structure provides a
basis for the identification of the free/free structure’s modal data.
Only one free/free mode shape could not be identified from the
FRFs because it was not excited significantly.

Fixed/Free Structure.
The first step after acquisition of the test data in form of Fourier

transforms here was to estimate those six columns of the
fixed/free structure’s FRF matrix which are related to the base
accelerations. This has been done using in-house software that is
based on the theory presented above. In figure 4 all 65 estimated
FRFs with respect to unit base accelerations are shown (third
column of the FRF matrix (23)).

Comparing the FRFs with respect to unit z-interface force in
figure 3 with those with respect to unit z-base accelerations in
figures 4 indicates that the latter exhibit more noise. This lack of
accuracy lead to uncertainties of the estimated FRFs that may be
traced back to the low base acceleration levels resulting from the
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limited impact force to excite the seismic block (low signal to
noise ratio).

Figure 4: Fixed/free FRFs with respect to unit z-base acceleration
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The six columns of the resulting FRF matrix again served as six
independent references that were used for the following modal
identification process.

All analytic mode shapes of the fixed/free structure could be
identified from at least two different references although the
visual quality of some mode shapes was very poor. The mode
shapes forming the final result were taken from those references
that yielded the best signal to noise ratio. Table 2 shows the
eigenfrequencies, MAC values (Test/FEA) and modal damping
ratios that are related to the 12 identified mode shapes. The modal
masses could not be identified with standard EMA software
because the effective excitation force on a structure under base
excitation is unknown. However these values could be identified
using another in-house software product that is based on the
theory presented by Link and Qian (1994) using the measured
interface forces and are also presented in table 2.

Table 2: Modal data of fixed/free TSP structure

# Freq.
(FEA)
[Hz]

Freq.
(Test)
[Hz]

MAC
value

[-]

Modal
Mass
[kg]

Modal
Damping

[%]
1 34.56 37.43 0.96 1.50 0.54
2 47.50 46.25 0.93 1.23 0.65
3 56.72 59.00 0.94 0.30 0.76
4 61.03 60.50 0.89 0.14 0.83
5 75.20 76.00 0.88 7.8 0.35
6 80.05 83.25 0.86 2.54 0.89
7 98.23 106.00 0.97 1.91 0.69
8 110.10 112.50 0.88 - 1.11
9 123.23 123.50 0.97 1.76 0.72

10 136.96 142.00 0.81 10.44 0.63
11 163.79 161.90 0.98 0.66 1.69
12 188.40 181.39 0.91 - 1.35

It can be seen that the MAC values are very good for all mode
shapes. Nevertheless due to the observed relatively low signal to
noise ratio some results for the modal damping and modal mass
values appeared to be sensitive to identification control
parameters and should be considered as mean values with
considerable scatter.

CONCLUSIONS
The theory and application presented in this paper show that a

complete identification of free/free and fixed/free modal data can
be accomplished by merely testing the fixed/free system with an
additional measurement of the reaction forces if nb linear
independent base excitation vectors are provided.

I.e. if the interface forces and displacements (accelerations) of a
fixed/free system are measured in addition to the structural
responses of the system in an appropriate manner (→ nb linear
independent base excitation axes) one has doubled the knowledge
of the system’s eigenbehavior. Thus, if we are able to measure
interface forces we can cut down testing time and testing costs
which represents an obvious advantage of the methods described
above.

However the application has also shown that a sufficient base
excitation level has to be supplied in order to achieve reliable
estimation and identification results.
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