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Abstract 
Optomechanical systems are very sensitive to external dynamic excitations, which may occur during 

operation or in the out-of-operation state. Vibration excitations are characterized by a relatively long 

duration and a small magnitude as well as randomness, whereas shock excitations have a relatively short 

duration and large magnitude. Both excitation types should be considered while designing robust 

optomechanical systems that can withstand the resulting loads. In this work, we focus on excitations 

occurring in the out-of-operation state. First, we discuss different shock and vibration excitations in time 

and frequency domains and specify realistic profiles that reflect handling and transport conditions. We 

also show that simplified optomechanical multi-body models are more adequate to specify the stiffness 

and damping values for hard stops required to prevent collision between system parts. Hard stops lead to a 

non-linear system since they exert forces once a predefined range is exceeded. However, we show that, to 

a certain extent, a linear model can be relied upon at an early stage of the design process to derive design 

specifications. We then address the modelling of one single hard stop based on measurements. The 

obtained model can be used to verify whether the real dynamic characteristics of the hard stops help 

prevent large relative displacements and forces between all optical elements. 

1 Introduction 

Lithography is a highly developed process step in the production of microchips for modern electronic 

devices. Its purpose is to create small structures on thin silicon discs, known as wafers. The lithographic 

projection objective is used to project small structures in a reticle onto a light-resistive coating on the 

wafer. This step is performed by wafer steppers in which the objective is embedded (see Figure 1a). The 

latest wafer steppers can resolve structure sizes of 22 nm. These extremely small sizes require 

exceptionally high accuracies in the lithography objective. Hence, even very small excitations during 

operation can cause erroneous projections. The same applies to small damages which can result from 

transport, earthquakes, or poor handling while setting up the machine. This paper will focus on the latter 

issues which are very decisive, especially during the early stages of the design process (see also [1]). 
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Figure 1a: ASML machine for producing semiconductor devices 

Figure 1b depicts a possible approach to mechanical shock mitigation of optomechanical systems which 

have to withstand tough external excitations during their setting up. Although it is not possible to shed 

light on each step of this approach within the scope of this work, we will be able to discuss some issues 

that arise from this approach. Section 2 addresses external shock and vibration excitations that may occur 

when the machine is out of operation. In Section 3, the non-linear vibration behaviour of a simplified 

optomechanical system subjected to shock and vibration excitations will be examined and visualized 

through response curves. Thereafter, we show that it is possible to some extent to rely on a linear model to 

find out the appropriate characteristics of the hard stops to avoid collisions and large forces. Section 4 

addresses the modelling of one single hard stop using measurement curves. The obtained model can be 

implemented in a more complex 3D multi-body model that allows for the computation of the 

displacements of all optical elements and the forces in their connections. This, in turn, enables one to 

check whether the specifications at system level, that is, avoiding collisions and large forces, are met. 
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Figure 1b: Design approach to mechanical shock mitigation of optomechanical systems 

2 Handling and Transport Conditions 

Fragile systems are generally assembled, carried, moved, and transported by trained personnel. 

Nonetheless, it is hardly possible to completely avoid mechanical excitations when performing these 

tasks. The drop of tools, collisions with neighbouring parts, etc. might lead to the propagation of large 

accelerations throughout the system and, in turn, to the damage of very expensive optical components. 

Clearly, these systems should be isolated from their environment, possibly through weak connections. 

Additionally, hard stops should be implemented in order to restrain the relative displacements of different 

parts with respect to each other in order to avoid collisions. 

In this context, one may distinguish between vibration and shock excitations. Vibration excitations are 

characterized by a relatively long duration and a small magnitude as well as randomness, whereas shock 

excitations have a relatively short duration and large magnitude (see also [2]). Both excitation types have 

to be taken into account while designing robust optomechanical systems that can withstand the resulting 

loads. Therefore, the possible sources and characteristics of different excitations will be outlined. 

With regard to shock excitations, the most obvious corresponding functions are step and pulse functions, 

whereas with regard to vibration excitations, noisy spectra could be expected. Nevertheless, the better the 

prescribed mathematical functions match the real excitation functions with regard to the magnitude and 

the frequency spectrum, the more accurate the theoretical prediction of the dynamic response and the 

dimensioning of optomechanical systems will be. The determination of appropriate mathematical 

functions is therefore a key issue. In the next subsections, we revisit some of these load cases to which 

realistic excitation functions are assigned. 
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2.1 Handling and Drop Shock 

The handling and assembling of optomechanical systems is extremely crucial because optical subsystems 

are directly exposed to external excitations during these tasks. Figure 2a shows the acceleration measured 

during a handling shock. Figure 2b shows a profile that is intended to reproduce the measured 

acceleration. Four decaying sinusoids are used to obtain a profile similar to the measured one. 

  

Figure 2a: Measured acceleration during a 

handling shock 

Figure 2b: Four decaying sinusoids to approximate 

the resulting acceleration during a handling shock 

It should be pointed out that half-sine functions are often used to model shock excitations. In this work, 

we prefer decaying sinusoids because they are more realistic. 

2.2 Transport 

Fragile systems such as those under study are usually transported by means of special transport boxes that 

are intended to dynamically isolate these systems from their vibrating environment. These boxes help to 

reduce the magnitude of high-frequency vibrations. Owing to the randomness of these excitations, they are 

better characterized by the representation of their power spectrum density (PSD). As shown in Figure 3a, 

the typical PSD of these vibrations might have a slope of up to -40 dB/decade once the last rigid body 

frequency of the transport box is passed. This is mainly because of the connection of the optomechanical 

system to the transport box, which can be considered as a low-pass filter. Figure 3b shows an acceleration 

profile, the PSD of which corresponds to that shown in Figure 3a.  

  

Figure 3a: Measured accelerations during the 

transport of optomechanical systems 

Figure 3b: Resulting acceleration profile 

Once external excitations can be characterized by mathematical functions, a multi-body model of the 

optomechanical system with hard stops will help to determine the quantities needed for a robust design. 
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3 Simplified Modelling of Optomechanical Systems 

As mentioned above, fragile optomechanical systems should possess weak connections and hard stops. 

The former ensures that the magnitude of high-frequency vibrations is reduced, and the latter, that the 

relative displacements between the optical elements are restricted. The study of such systems should 

therefore account for the non-linear behaviour due to hard stops that exert discontinuous forces on the 

optical elements. A linear model, however, could be numerically more efficient to perform parameter 

variations and derive stiffness and damping specifications. The next generic example points out the 

challenges related to these issues. In this section, the numerical values of the quantities to be considered 

are not reported. We rather focus on qualitative investigations. 

3.1 Generic Example of an Optomechanical System with Hard Stops 

Without loss of generality, we consider a base-excited mass-spring system (see Figure 4). Apart from 

damped soft mounts, that is, linear springs and viscous dampers, that connect n optical elements (either 

reflecting surfaces or lenses), hard stops are used to ensure that the relative displacements, and, in turn, the 

relative forces, between the optical elements remain limited. As mentioned above, these hard stops are 

required whenever large displacements are expected; the springs yield a low-pass behaviour that is needed 

to dynamically decouple the optical elements from the rest of the machine. It should be noted that low-

pass behaviour alone is not sufficient to prevent collisions. 

 

Figure 4: Schematic representation of a generic base-excited optomechanical system 

The equation of motion of the i-th optical element reads as follows: 

   ̈  (   |  |        |    |    
)         |    |    

          |  |                       
    , (1) 

where    is the stiffness of the spring connecting masses    and     ;  
 
, the stiffness of the hard stop 

acting between the aforementioned masses; and   , the gap in the hard stops, that is, the distance that can 

be travelled before the hard stops are active.    denotes whether the i-th hard stop is active. The 

mathematical function associated with this constraint could be formulated as follows: 

    {
      |       |     
                 

                  

  (2) 

For the first mass (i = 1),    has to be derived from the excitations, introduced in Section 3. For the last 

mass (i = n), all parameters related to the (non-existing) optical element with the index i + 1 are zero. The 

term on the right-hand side of Eq. (1) is a correction term which comes into account if the gap    in the 

hard stop is exceeded. Indeed, along the gap, the hard stops are not active. For simplicity of exposition, 
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the damping terms were not considered in Eq. (1). Their formulation is, however, very similar to that of 

the stiffness terms. 

Furthermore, it should be noted that a smoother function for    could be chosen in order to make the 

numerical solving of the differential equations more efficient. 

The resulting equation of motion does not differ from the well-known equation: 

   ̈      ̇                (3) 

where   is the mass matrix;   is the vector containing the absolute displacements of the masses; and   is 

the excitation vector whose first component contains the base-excitation function      .   and   are, 

respectively, the stiffness and damping matrixes. Apart from the stiffness and damping of the springs, they 

also include the hard stops’ stiffness and damping. Hence, the dynamic response of this non-linear system 

will be significantly affected by the hard stops.  

At the end of this section, it should be noted that complex optomechanical systems may be implemented 

within a multi-body software. Nevertheless, analytical models allow for a better understanding of the 

dynamic behaviour. The most adequate approach might be to begin with simple analytical equations and 

then proceed with the implementation of more complex 3D multi-body models. The main task now is to 

compute the dynamic response of this simplified system in terms of relative displacements. This quantity 

is the most relevant one in this context because it is a measure of the relative forces as well as of the stress 

in both the optical elements and the hard stops. Moreover, it is an indicator of collision. 

3.2 Dynamic Response to Different Excitations 

In this section, we are mainly concerned with the dynamic response of the optomechanical system 

presented in the previous section. For this purpose, the system is excited by sine functions with different 

amplitudes and frequencies. The qualitative dynamic response in terms of maximum relative 

displacement, that is, |        |, between the optical elements is shown in Figure 5. These diagrams are 

obtained by computing the transient response and taking the maximum value for each excitation 

frequency. This representation can be considered a measure of the sensitivity of the optomechanical 

system to shock or vibration excitations. Hence, it allows for the characterization of its robustness. 

If the hard stops are not active, the system is linear. Correspondingly, it exhibits two generic resonance 

frequencies at 5 and 15 Hz. The system’s response vanishes at low frequencies and levels off towards high 

frequencies for the first optical element (as is observed for base excitation). If the hard stops are active, the 

response exhibits peaks at frequencies larger than the natural frequencies of the linear system because of 

the additional stiffness of the hard stops. This representation also points out that additional hard stops help 

to decrease the maximum relative displacements between the optical elements in the subcritical region. 

Figure 5a shows the influence of increasing the gaps. It is noteworthy that a large gap yields major 

changes in the dynamic behaviour of the system, especially for low frequencies. In contrast to systems 

with smaller gaps, those with large gaps do not guarantee that relative displacements remain restricted for 

static excitations because the motion of one excited base or optical element is not transmitted to the next 

optical element. Figure 5b highlights the advantages of increasing the stiffness of the hard stops that 

always lead to reducing the relative displacements for a wider range of frequencies. Increasing the 

amplitude of the excitation function also affects the maximum relative displacements but has no major 

impact on the curve for given parameters of the hard stops. 
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Figure 5a: Qualitative response curves of systems 

with different gaps 

Figure 5b: Qualitative response curves of systems 

with different stiffnesses of the hard stops 

As we are dealing with non-linear systems, it is questionable whether the response of systems possessing 

hard stops can be deduced from the results of harmonic excitations. For this reason, the excitations 

discussed above are applied to systems with different parameters. It turns out that the conclusions drawn 

in this section are valid for a wide spectrum of excitations, with some precautions. 

Once the dynamic behaviour for different excitation frequencies is known, it is more straightforward to 

develop design rules for the implementation of hard stops. A reduction of the relative displacements, as 

well as the risk of collision, between the optical elements may be achieved by using stiff hard stops. In 

this case, low-frequency excitations are best suppressed. This may be particularly promising, as the largest 

amplitudes of the excitations discussed above are expected at low frequencies. It should be noted, 

however, that except for the first optical element, which is directly in contact with the base, high-

frequency excitations may also be suppressed for the remaining optical elements. This is mainly because 

the absolute motion, that is, with respect to a fixed coordinate system, of the first optical element is not 

observed for high frequencies. The gap should be chosen by focusing on two criteria: it should be small 

enough to guarantee that the relative displacements remain restricted and large enough so that sudden 

contact between the optical elements during operation is prevented. 

3.3 Linearization for Design Purposes 

For design purposes, it is more adequate to deal with linear models since they are more efficient from a 

computational point of view. Additionally, optimization tasks and parameter variations can be performed 

more easily based on linear systems. A possible way to do so involves linearizing the overall stiffness line 

of each connection of the generic optomechanical system presented in the previous section. Figure 6 

depicts the stiffness lines of one connection shown in Figure 4. The proposed approach involves using one 

linear stiffness curve that takes into account the stiffness of the soft mount and that of the hard stop.  

Figure 6b points out that an increase in the gap in the hard stops leads to weakening of the connection 

between optical elements for low frequencies, as seen in Figure 5a. Increasing the stiffness of the hard 

stops will lead to a higher stiffness of the whole connection. This is also in line with Figure 5b. In this 

way, we can account for two major effects that are expected of the non-linear system in Section 3.1. 
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Figure 6a: Linearization of the stiffness 

characteristic of a connection between two optical 

elements 

Figure 6b: Impact of a gap increase 

Once the connection stiffness is linearized, it is possible to define an equivalent linear model as shown in 

Figure 7. 

 

Figure 7: Equivalent linear model 

The equation of motion of the i-th optical element reads as follows: 

    ̈            ̇                   ̇                ̇              (4) 

where    and    are, respectively, the stiffness and damping of the connection between optical element i 

and i + 1. In contrast to Eq. (1), the equation derived in this section is linear. Hence, its Laplace 

transformation, as well as the transfer functions    
  

  
, can be calculated. Based on these transfer 

functions, the relative displacements between all optical elements can be determined in terms of the 

excitation function      . When harmonic excitation functions with different frequencies are used, the 

shock response spectra (see [2]) of Figure 8 are obtained. In addition to estimating the maximum relative 

displacement of each optical element with respect to the neighbouring one, it is possible to observe the 

impact of increasing the stiffness and damping of the connections between the optical elements. These 

curves do not differ much from those shown in Figure 5 despite the linearization. 

The proposed approach involves generating for each optical element a shock response spectrum similar to 

those shown in Figure 8. Based on these diagrams and the frequency content of the expected excitations, 

rough estimations of the required stiffness and damping can be made for each connection between two 

different optical elements. In this way, specifications for each connection can be derived. Noting that the 

expected excitations will not excite all frequencies to the same extent, the system’s response near 

resonances will not necessarily be the most relevant. Moreover, thorough investigations show that 

elastomer materials are the most adequate for restricting relative displacements and avoiding collisions 

between optical elements owing to their high damping characteristics. 
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Figure 8a: Influence of damping on the shock 

response spectrum of optical element 1 

 

Figure 8b: Influence of damping on the shock 

response spectrum of optical element 2 

 

Figure 8c: Influence of increased stiffness on the 

shock response spectrum of optical element 1 

 

Figure 8d: Influence of increased stiffness on the 

shock response spectrum of optical element 2 

In this section, we showed how one could rely on shock spectra of a linear model to determine the 

specifications needed for the design of hard stops. The next step involves verifying whether the designed 

hard stops match the specified stiffness and damping values. First, the design should be verified using an 

FEA model of one single hard stop that accounts for the non-linear material properties of elastomers. If 

the results are promising, a prototype can be built. Measurements can then help to identify the dynamic 

characteristics of the designed hard stop. The next section outlines a possible identification approach. 

4 Measurements and Modelling of Hard Stops 

In this section, a rheological model is used for the identification of stiffness, viscous damping, and 

possible friction of one single hard stop mainly made of elastomer material. Figure 9 shows a rheological 

model consisting of one non-linear spring K0 and three or more ( ) Maxwell elements that, in turn, 

consist of a linear spring and a viscous damper. In this work, we use Maxwell elements to generate a 

viscoelastic (frequency-dependent) behaviour and the non-linear spring K0 to generate an amplitude-

dependent behaviour. Generally, Jenkin elements consisting of a linear spring and a frictional element can 

be used to model amplitude-dependent Coulomb friction. Compared to the use of a non-linear spring, the 

use of Jenkin elements is more expensive for solving the underlying mathematical equations. Therefore, 

they are not considered within this work. The resulting relationship between F and u reads as follows: 

         
 

 
       ∑

      
 

      

 
   , (5) 

where F and u are the displacement and force acting on one hard stop.       can be interpreted as the 

non-linear quasi-static stiffness of the hard stop.   is the excitation frequency, and          
  are the 

viscous damping and the (dynamic) stiffness of each Maxwell element, respectively. 
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Figure 9: Rheological model of one single hard stop made of elastomer material 

Clearly, the transfer function         of Eq. (5) depends on the excitation frequency and the 

displacement of one hard stop. The overall stiffness          of the hard stop is obtained by taking the 

norm of         according to this equation: 

                |       |. (6) 

The overall loss term,     , can be expressed by 

      
  (       )

  (       )
 . (7) 

The overall stiffness and the loss term of Eq. (6) and (7) are usually the measured quantities in this 

context. The identification task now involves varying the parameters introduced in Eq. (5) to obtain the 

measured characteristics. Figure 10 shows a possible result of this process. 

  

Figure 10a: Loss term of one hard stop in terms of 

excitation frequency 

Figure 10b: Overall stiffness of one hard stop in 

terms of excitation frequency 

Based on the results presented in Figure 10, it is possible to compute the reaction force of one hard stop in 

terms of excitation frequency and displacement. For verification purposes, the model of one single hard 

stop in Figure 11 can be implemented within the 3D multi-body model of the entire mechanical system to 

ensure that the real design does not violate any specification. 
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Figure 11: Frequency- and amplitude-dependent force of one hard stop  

5 Conclusion 

In this work, we focused on excitations that may occur when the machine is out of operation. First, we 

discussed different shock and vibration excitations in both the time and frequency domains and specified 

realistic profiles that reflect handling and transport conditions. Using a simplified optomechanical multi-

body model, we showed that hard stops are needed in order to ensure that all parts of the system do not 

collide when they are subject to dynamic excitations. These hard stops create a non-linear system since 

they exert forces once a predefined range is exceeded. However, we showed that it is possible, to a certain 

extent, to rely on a linear model at an early stage of the design process. Indeed, this model is more 

adequate for deriving specifications. We also showed that a rheological model may be used to identify the 

dynamic characteristics of hard stops made of elastomer materials. The obtained model can be 

implemented within a multi-body software to validate the final design of the whole optomechanical 

system. Future works will be devoted to a better FEA modelling of elastomer materials over a wide 

frequency range in order to reduce the measurement efforts and to simplify the design process. 
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