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This lecture gives a brief overview of procedures for validating analytical models using experimental data 
including some exemplary results.  The presentation is restricted to current procedures established by 
experience with large order industrial applications.  The basic numerical techniques for updating the 
parameters of Finite Element (FE) models are described. Sources of modeling and test data uncertainties 
are addressed together with related requirements concerning the quality of the initial analytical model and 
the test data. Obstacles to ensure the prediction capability of the updated models to untested situations are 
discussed.  The described applications include an automotive car body and a civil aircraft structure. 
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1  Introduction 

Considerable discrepancies between Finite Element 
(FE) structural analysis results and experimental data 
are often observed in complex practical applications. 
The classical way to reduce these discrepancies is to 
modify by trial and error the assumptions made for the 
mechanical idealizations and the parameters of the 
analytical model until the correlation of analytical 
predictions and experimental results satisfies practical 
requirements. For complex FE models this trial and 
error approach turns out to be very time consuming and 
sometimes is not feasible at all. Some effort has 
therefore been spent in the past in the development of 
computational procedures for updating the parameters 
of analytical models using dynamic test data 
(computational model updating, CMU). 

The expected non-uniqueness of the updated 
models due to different CMU methods, different 
structural idealizations, different parameter sets and, of 
course, different test data sets being polluted by 
unavoidable noise and not being representative for the 
whole sample space  can be tolerated if the updated 
models retain their prediction capability with regard to 
the intended purpose. In this case, and only in this case, 
an updated model may be considered as an equivalent 

model validated with respect to a special purpose. The 
problem remains how to check the prediction capability.  

The following requirements for a validated model 
were proposed within the European research co-
operation COST, ref. [1], some of which were also 
applied for the application examples described below: 

1)  The equivalent model must be capable of 
predicting the experimental modal data and/or the 
frequency response functions (FRFs) within the active 
frequency range and within certain accuracy limits. The 
term active frequency range is related to the frequency 
range used for computational model updating. This 
criterion represents a minimum requirement which does 
not yet say much about the prediction quality of the 
model. The prediction quality should therefore be 
checked using the following additional criteria: 

2)  Prediction of the eigenfrequencies and modes 
beyond the active frequency range (passive range). 

3)  Prediction of the frequency response functions 
(FRFs) obtained from loading conditions other than 
those used for CMU.  

4)  Prediction of the modal data and/or FRFs of a 
modified structure. The structural modification might 
consist of one or more added masses or by changed 
boundary conditions.  
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In this lecture a brief overview of methods and 
results of using computational optimization techniques 
to update the parameters of large order FE models is 
presented together with assessments of the model 
validity depending on the final utilization purpose. The 
described applications include the results of an 
automotive car body and a civil aircraft structure. 

2  Theoretical Background 

Computational model updating (CMU) procedures 
are aimed at fitting selected model parameters such that 
the test/analysis deviations (residuals) are minimised. 
The residuals ( )T∆ = −z z z p  ( Tz := test data vector, 

( )z p =: corresponding analytical data vector) usually 
depend in a non-linear way on the parameters. Thus the 
minimization problem is also non-linear and must be 
solved iteratively. One way is to use the classical 
sensitivity approach (e.g. references [2-4]) where the 
analytical data vector is linearised by a Taylor series 
expansion truncated after the first term which leads to: 

0 0∆ = ∆ − ∆z z G p                  (1) 

with 
0∆ = −p p p  design parameter changes, 

0p design parameter vector at linearization point 
(index “0”), 

0 0( )T∆ = −z z z p test/analysis differences at 
linearization point, for example, the differences between 
eigenfrequencies, mode shapes or frequency responses, 

0
0G

=
= ∂ ∂

p p
z p sensitivity matrix at linearization point. 

The desired model parameter changes ∆p  are 
obtained by minimizing the following objective function 
J with respect to the parameter changes ∆p : 

( ) minT T
pJ ∆ = ∆ ∆ + ∆ ∆ →p z W z p W p                (2) 

where W  and pW  are weighting matrices. The 
second term in equation (2) is used to constrain the 
parameter variation. The minimization condition 

/ 0J∂ ∂∆ =p  yields the linear equation system (3) 
which has to be solved with respect to the vector of 
parameter changes 0∆ = −p p p  at the linearization 
point. 

( )0 0 0 0
T T

p+ ∆ = ∆G WG W p G W z  .                            (3) 

The iterative numerical procedure starts from 
nominal parameter values which are updated after each 
iteration step: 0 0⇒ + ∆p p p . The parameter vector p0 
from the previous iteration step represents the 
linearization point. Depending on the choice of the 
residuals used in the objective function the sensitivity 
matrix  may include the sensitivities / ip∂ ∂λ  (λλλλ = 

vector of eigenvalues), / ip∂ ∂φ  (ϕϕϕϕ = mode shapes), 
/ ip∂ ∂u ( u = vector of frequency responses) or other 

residuals with respect to the i-th parameter pi.  
For Wp= 0, equation (3) represents a standard 

weighted least squares problem. 
The above minimization procedure requires a 

parameterization of the model with respect to the 
stiffness, mass and damping parameters, p , in the 
equation of motion,   

2( ( ) ( ) ( ) )jω ω− + + =M p D p K p u F                      (4) 

( 1j = − , ω = excitation frequency, u = complex 
frequency response vector and F = excitation force 
vector). 

The vector p contains the unknown correction 
parameters addressing the uncertain parameters of the 
stiffness matrix K, the mass matrix M, and the damping 
matrix D. The type and the location of these parameters 
must be specified by the user which, for complex 
practical applications, often turns out to be a bigger 
problem than calculating their values by numerical 
procedures. The sensitivities can directly be calculated 
by finite differences in each iteration step, for example 
by: 

( )( )( )

... ...
i i i i ip p p p p

others

λ λ ε λ ε∂ ∂ = + −
               (5)                       

(ε = small perturbation number, i =1,..., np = no. of 
parameters to be updated). 

This formulation allows for updating geometrical 
shape parameters like grid point locations and even the 
FE mesh density, ref. [5]. Non- linear model parameters 
can also be updated as was shown in refs. [6]. In this 
case the non- linear time domain equation of motion 
was transformed to the frequency domain by using the 
harmonic balance theory which leads to the form 

 
2[ ( ( ) ) ( )]NL NLj u uω ω− + + + + =M D D K K u F . (6) 

where ( )  and ( )NL NLu uD K  represent non- linear 
terms depending on the displacement amplitudes.  

The variance of the test data can be taken into 
account by proper assumptions for the weighting matrix 
W in eq.(2). It can be shown by linear statistical 
analysis that the covariance matrix of the parameter 
estimate is related to the covariance matrix of the test 
data vector by 

 cov( ) cov( ) T
T

+ +∆ =p G z G                (7) 

where +G  denotes the pseudo inverse of the 
sensitivity matrix. This equation illustrates the 
importance of the condition of the sensitivity matrix 
which governs the covariance of the parameter estimate. 
The condition of the sensitivity matrix is governed by 
the type and the number of parameters selected for 



updating. An unfavorable parameter selection may thus 
lead to meaningless parameter estimates. 

Eq.(7) assumes that the sensitivity matrix represents 
a deterministic quantity. This assumption is in contrast 
to reality since the sensitivity matrix is also a function 
of the model parameters.   

Procedures to take into account both the scatter of 
the test data as well as the scatter of the parameters are 
being developed at present and form a future direction 
in model updating and validation. Monte Carlo methods 
and the stochastic finite Element method introduced in 
ref. [7] may be used to simulate the response of the 
model due to stochastic modeling parameters.  

Other techniques being under development are 
based on the assumption that test data and model 
parameters may be considered as fuzzy numbers which 
do not necessarily have to involve assumptions on 
statistical properties, ref. [8]. Instead membership 
functions are defined which denote the grade of 
membership of a parameter in a fuzzy subset.   

The problem to solve the inverse fuzzy arithmetic 
problem, given the test data as fuzzy numbers and 
getting back the parameter values as fuzzy numbers, is 
at the beginning and represents a promising research 
direction. An example can be found in ref. [9].  

3  Applications  

3.1  Automotive Car Body 

A study supported by the German Automotive 
Industry, Working Group Structural Optimization and 
Acoustics, ref. [10], was aimed at validating the Finite 
Element model of a car body in white as shown in fig.1. 

For keeping the inevitable uncertainties from the 
test side as small as possible a thorough test planning is 
essential. Utilizing the initial Finite Element model both 
measurement degrees of freedom and exciter positions 
are first determined based on the results of a numerical 
algorithm established on a linear independence 
criterion, ref. [11].  

For complex industrial applications it may happen 
that computational model updating will not yield 
physically meaningful results for all chosen parameters 
in the first place. In such cases areas of the investigated 
system where severe modeling deficiencies exist can 
often be identified by sensitivity analysis, which forms 
an integral part of the updating algorithm. Dedicated 
remodeling of such areas can usually improve the 
situation, leading to a better basis for computational 
model updating. 

Subsequent computational model updating may 
then lead to an improved correlation and a noticeable 
reduction of the test/analysis deviations over a broad 
frequency range. Fig. 2 for example shows the 
eigenfrequency deviations and MAC values describing 
the correlation of the mode shapes before and after 
computational model updating (MAC = 100% would 
mean perfect correlation). 

 
Figure 1: FE model of a car body 

 

 
Figure 2: Eigenfrequency deviations and MAC 
values before and  after updating of a model of a 
car body 

 

3.2  Civil Aircraft 

A second large scale application is related to the 
validation of the FE-model of an aircraft structure as 
shown in fig.3. Deviation of analytical and experimental 
results is most often unavoidable due to the complexity 
of aircraft structures. The need to validate the analytical 
model is required within the aeroelastic stability 
certification process of civil aircraft. The analytical 
models have to satisfy high standards with regard to 
flutter calculations and windmilling certification 
calculations. Computational model updating of a large 
civil aircraft FE-model, ref. [12], are summarized in this 
lecture. After updating the results correlate well with the 
data from ground vibration test in the frequency range 
which was used in the objective function (active 
frequency range). The model’s prediction capability was 



also checked by comparing the analytical model 
predictions in the passive frequency range as shown in 
fig.4 and also to predict the frequency response which 
was not included in the objective function. 
 
 

 
Figure 3: FE- model of 4-engine civil aircraft 

 

 

 
Figure 4: Eigenfrequency deviations and MAC 
values before and after updating of an aircraft 
structure 
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